Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Non-invasive brain stimulation in children: Applications and future directions

Thilinie Rajapakse
  • Section of Pediatric Neurology, Alberta Children’s Hospital Research Institute, Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Kirton
  • Section of Pediatric Neurology, Alberta Children’s Hospital Research Institute, Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-09 | DOI: https://doi.org/10.2478/s13380-013-0116-3


Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain.

Keywords: Transcranial magnetic stimulation; Non-invasive brain stimulation; Neuromodulation; Neurostimulation; Child; Pediatrics; Safety; Therapeutic trials

  • [1] Wassermann E.M., Epstein C.M., Ziemann U. (Eds.) The Oxford handbook of transcranial stimulation, Oxford University Press, New York, 2008 Google Scholar

  • [2] Rossi S., Hallett M., Rossini P.M., Pascual-Leone A., Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research, Clin. Neurophysiol., 2009, 120, 2008–2039 http://dx.doi.org/10.1016/j.clinph.2009.08.016CrossrefGoogle Scholar

  • [3] Garvey M.A., Mall V., Transcranial magnetic stimulation in children, Clin. Neurophysiol. 2008, 119, 973–984 http://dx.doi.org/10.1016/j.clinph.2007.11.048CrossrefGoogle Scholar

  • [4] Frye R.E., Rotenberg A., Ousley M., Pascual-Leone A., Transcranial magnetic stimulation in child neurology: current and future directions, J. Child Neurol., 2008, 23, 79–96 http://dx.doi.org/10.1177/0883073807307972CrossrefGoogle Scholar

  • [5] Gilbert D.L., Garvey M.A., Bansal A.S., Lipps T., Zhang J., Wassermann E.M., Should transcranial magnetic stimulation research in children be considered minimal risk?, Clin. Neurophysiol. 2004, 115, 1730–1739 http://dx.doi.org/10.1016/j.clinph.2003.10.037CrossrefGoogle Scholar

  • [6] McCreery D.B., Agnew W.F., Yuen T.G., Bullara L., Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation, IEEE Trans. Biomed. Eng., 1990, 37, 996–1001 http://dx.doi.org/10.1109/10.102812CrossrefGoogle Scholar

  • [7] Lisanby S.H., Belmaker R.H., Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): comparisons with electroconvulsive shock (ECS), Depress. Anxiety, 2000, 12, 178–187 http://dx.doi.org/10.1002/1520-6394(2000)12:3<178::AID-DA10>3.0.CO;2-NCrossrefGoogle Scholar

  • [8] Ghaziuddin N., Dumas S., Hodges E., Use of continuation or maintenance electroconvulsive therapy in adolescents with severe treatment-resistant depression, J. ECT, 2011, 27, 168–174 http://dx.doi.org/10.1097/YCT.0b013e3181f665e4CrossrefGoogle Scholar

  • [9] Garvey M.A., Gilbert D.L., Transcranial magnetic stimulation in children, Eur. J. Paediatr. Neurol. 2004, 8, 7–19 http://dx.doi.org/10.1016/j.ejpn.2003.11.002CrossrefGoogle Scholar

  • [10] Quintana H., Transcranial magnetic stimulation in persons younger than the age of 18, J. ECT, 2005, 21, 88–95 http://dx.doi.org/10.1097/01.yct.0000162556.02720.58CrossrefGoogle Scholar

  • [11] Duque J., Hummel F., Celnik P., Murase N., Mazzocchio R., Cohen L.G., Transcallosal inhibition in chronic subcortical stroke, Neuroimage, 2005, 28, 940–946 http://dx.doi.org/10.1016/j.neuroimage.2005.06.033CrossrefGoogle Scholar

  • [12] Takeuchi N., Chuma T., Matsuo Y., Watanabe I., Ikoma K., Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke, Stroke, 2005, 36, 2681–2686 http://dx.doi.org/10.1161/01.STR.0000189658.51972.34CrossrefGoogle Scholar

  • [13] Khedr E.M., Ahmed M.A., Fathy N., Rothwell J.C., Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke, Neurology, 2005, 65, 466–468 http://dx.doi.org/10.1212/01.wnl.0000173067.84247.36CrossrefGoogle Scholar

  • [14] Naeser M.A., Martin P.I., Nicholas M., Baker E.H., Seekins H., Kobayashi M., et al., Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study, Brain Lang., 2005, 93, 95–105 http://dx.doi.org/10.1016/j.bandl.2004.08.004CrossrefGoogle Scholar

  • [15] Mansur C.G., Fregni F., Boggio P.S., Riberto M., Galluci-Neto J., Santos C.M., et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients, Neurology, 2005, 64, 1802–1804 http://dx.doi.org/10.1212/01.WNL.0000161839.38079.92CrossrefGoogle Scholar

  • [16] Hummel F., Cohen L.G., Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke, Neurorehabil. Neural Repair, 2005, 19, 14–19 http://dx.doi.org/10.1177/1545968304272698CrossrefGoogle Scholar

  • [17] Staudt M., Gerloff C., Grodd W., Holthausen H., Niemann G., Krageloh-Mann I., Reorganization in congenital hemiparesis acquired at different gestational ages, Ann. Neurol., 2004, 56, 854–863 http://dx.doi.org/10.1002/ana.20297CrossrefGoogle Scholar

  • [18] Maegaki Y., Maeoka Y., Ishii S., Shiota M., Takeuchi A., Yoshino K., et al., Mechanisms of central motor reorganization in pediatric hemiplegic patients, Neuropediatrics, 1997, 28, 168–174 http://dx.doi.org/10.1055/s-2007-973695CrossrefGoogle Scholar

  • [19] Salimi I., Martin J.H., Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens, J. Neurosci., 2004, 24, 4952–4961 http://dx.doi.org/10.1523/JNEUROSCI.0004-04.2004CrossrefGoogle Scholar

  • [20] Valero-Cabre A., Rushmore R.J., Payne B.R., Low frequency transcranial magnetic stimulation on the posterior parietal cortex induces visuotopically specific neglect-like syndrome, Exp. Brain Res., 2006, 1–8 Google Scholar

  • [21] Valero-Cabre A., Payne B.R., Rushmore J., Lomber S.G., Pascual-Leone A., Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C–2DG tracing study in the cat, Exp. Brain Res., 2005, 163, 1–12 http://dx.doi.org/10.1007/s00221-004-2140-6CrossrefGoogle Scholar

  • [22] Bolay H., Gursoy-Ozdemir Y., Unal I., Dalkara T., Altered mechanisms of motor-evoked potential generation after transient focal cerebral ischemia in the rat: implications for transcranial magnetic stimulation, Brain Res., 2000, 873, 26–33 http://dx.doi.org/10.1016/S0006-8993(00)02466-5CrossrefGoogle Scholar

  • [23] Plautz E.J., Barbay S., Frost S.B., Friel K.M., Dancause N., Zoubina E. V., et al., Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates, Neurol. Res., 2003, 25, 801–810 http://dx.doi.org/10.1179/016164103771953880CrossrefGoogle Scholar

  • [24] Eyre J.A., Flecknell P.A., Kenyon B.R., Koh T.H., Miller S., Acute effects of electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate in the cat: an evaluation of safety, J. Neurol. Neurosurg. Psychiatry, 1990, 53, 507–513 http://dx.doi.org/10.1136/jnnp.53.6.507CrossrefGoogle Scholar

  • [25] Edgley S.A., Eyre J.A., Lemon R.N., Miller S., Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey, J. Physiol., 1990, 425, 301–320 Google Scholar

  • [26] Wassermann E.M., Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996, Electroencephalogr. Clin. Neurophysiol., 1998, 108, 1–16 http://dx.doi.org/10.1016/S0168-5597(97)00096-8CrossrefGoogle Scholar

  • [27] Theodore W.H., Hunter K., Chen R., Vega-Bermudez F., Boroojerdi B., Reeves-Tyer P., et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study, Neurology, 2002, 59, 560–562 http://dx.doi.org/10.1212/WNL.59.4.560CrossrefGoogle Scholar

  • [28] Tassinari C.A., Cincotta M., Zaccara G., Michelucci R., Transcranial magnetic stimulation and epilepsy, Clin. Neurophysiol., 2003, 114, 777–798 http://dx.doi.org/10.1016/S1388-2457(03)00004-XCrossrefGoogle Scholar

  • [29] Pascual-Leone A., Valls-Sole J., Wassermann E.M., Brasil-Neto J., Cohen L.G., Hallett M., Effects of focal transcranial magnetic stimulation on simple reaction time to acoustic, visual and somatosensory stimuli, Brain, 1992, 115, 1045–1059 http://dx.doi.org/10.1093/brain/115.4.1045CrossrefGoogle Scholar

  • [30] Collado-Corona M.A., Mora-Magana I., Cordero G.L., et al., Transcranial magnetic stimulation and acoustic trauma or hearing loss in children, Neurol. Res., 2001, 23, 343–346 http://dx.doi.org/10.1179/016164101101198532CrossrefGoogle Scholar

  • [31] Kirton A., Chen R., Friefeld S., Gunraj C., Pontigon A.M., deVeber G., Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial, Lancet Neurol., 2008, 7, 507–513 http://dx.doi.org/10.1016/S1474-4422(08)70096-6CrossrefGoogle Scholar

  • [32] Kirton A., deVeber G., Gunraj C., Chen R., Neurocardiogenic syncope complicating pediatric transcranial magnetic stimulation, Pediatr. Neurol., 2008, 39, 196–197 http://dx.doi.org/10.1016/j.pediatrneurol.2008.06.004CrossrefGoogle Scholar

  • [33] Rossini P.M., Desiato M.T., Caramia M.D., Age-related changes of motor evoked potentials in healthy humans: non-invasive evaluation of central and peripheral motor tracts excitability and conductivity, Brain Res., 1992, 593, 14–19 http://dx.doi.org/10.1016/0006-8993(92)91256-ECrossrefGoogle Scholar

  • [34] Lin K.L., Pascual-Leone A., Transcranial magnetic stimulation and its applications in children, Chang Gung Med. J., 2002, 25, 424–436 Google Scholar

  • [35] Rajapakse T., Damji O.K., Safety and tolerability of Transcranial Magnetic Stimulation (TMS) neurophysiology and interventional rTMS in children with perinatal stroke, 16th Annual Meeting of the North American Neuromodulation Society, 2012, 11 Google Scholar

  • [36] Liebetanz D., Fauser S., Michaelis T., Czéh B., Watanabe T., Paulus W., et al., Safety aspects of chronic low-frequency transcranial magnetic stimulation based on localized proton magnetic resonance spectroscopy and histology of the rat brain, J. Psychiatr. Res., 2003, 37, 277–286 http://dx.doi.org/10.1016/S0022-3956(03)00017-7CrossrefGoogle Scholar

  • [37] Garvey M.A., Kaczynski K.J., Becker D.A., Bartko J.J., Subjective reactions of children to single-pulse transcranial magnetic stimulation, J. Child. Neurol., 2001, 16, 891–894 http://dx.doi.org/10.1177/088307380101601205CrossrefGoogle Scholar

  • [38] Sokhadze E.M., Baruth J.M., Sears L., Sokhadze G.E., El-Baz A.S., Casanova M.F., Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism, Appl. Psychophysiol. Biofeedback, 2012, 37, 91–102 http://dx.doi.org/10.1007/s10484-012-9182-5CrossrefGoogle Scholar

  • [39] Croarkin P.E., Wall C.A., Nakonezny P.A., Buyukdura J.S., Husain M.M., Sampson S.M., et al., Increased cortical excitability with prefrontal high-frequency repetitive transcranial magnetic stimulation in adolescents with treatment-resistant major depressive disorder, J. Child Adolesc. Psychopharmacol., 2012, 22, 56–64 http://dx.doi.org/10.1089/cap.2011.0054CrossrefGoogle Scholar

  • [40] Enticott P.G., Rinehart N.J., Tonge B.J., Bradshaw J.L., Fitzgerald P.B., Repetitive transcranial magnetic stimulation (rTMS) improves movement-related cortical potentials in autism spectrum disorders, Brain Stimul., 2012, 5, 30–37 http://dx.doi.org/10.1016/j.brs.2011.02.001CrossrefGoogle Scholar

  • [41] Wall C.A., Croarkin P.E., Sim L.A., Husain M.M., Janicak P.G., Kozel F.A., et al., Adjunctive use of repetitive transcranial magnetic stimulation in depressed adolescents: a prospective, open pilot study, J. Clin. Psychiatry, 2011, 72, 1263–1269 http://dx.doi.org/10.4088/JCP.11m07003CrossrefGoogle Scholar

  • [42] Kwon H.J., Lim W.S., Lim M.H., Lee S.J., Hyun J.K., Chae J.H., et al., 1-Hz low frequency repetitive transcranial magnetic stimulation in children with Tourette’s syndrome, Neurosci. Lett., 2011, 492, 1–4 http://dx.doi.org/10.1016/j.neulet.2011.01.007CrossrefGoogle Scholar

  • [43] Hu S.H., Wang S.S., Zhang M.M., Wang J.W., Hu J.B., Huang M.L., et al., Repetitive transcranial magnetic stimulation-induced seizure of a patient with adolescent-onset depression: a case report and literature review, J. Int. Med. Res., 2011, 39, 2039–2044 http://dx.doi.org/10.1177/147323001103900552CrossrefGoogle Scholar

  • [44] Sun W., Fu W., Mao W., Wang D., Wang Y., Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy, Clin. EEG Neurosci., 2011, 42, 40–44 http://dx.doi.org/10.1177/155005941104200109CrossrefGoogle Scholar

  • [45] Kirton A., deVeber G., Gunraj C., Chen R., Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: plastic organization and effects of rTMS, Clin. Neurophysiol., 2010, 121, 1922–1929 http://dx.doi.org/10.1016/j.clinph.2010.04.021CrossrefGoogle Scholar

  • [46] Sokhadze E., Baruth J., Tasman A., Mansoor M., Ramaswamy R., Sears L., et al., Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism, Appl. Psychophysiol. Biofeedback, 2010, 35, 147–161 http://dx.doi.org/10.1007/s10484-009-9121-2CrossrefGoogle Scholar

  • [47] Mylius V., Gerstner A., Peters M., Prokisch H., Leonhardt A., Hellwig D., et al., Low-frequency rTMS of the premotor cortex reduces complex movement patterns in a patient with pantothenate kinaseassociated neurodegenerative disease (PKAN), Neurophysiol. Clin., 2009, 39, 27–30 http://dx.doi.org/10.1016/j.neucli.2008.12.003CrossrefGoogle Scholar

  • [48] Sokhadze E.M., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M.F., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J. Autism Dev. Disord., 2009, 39, 619–634 http://dx.doi.org/10.1007/s10803-008-0662-7CrossrefGoogle Scholar

  • [49] Rotenberg A., Bae E.H., Takeoka M., Tormos J.M., Schachter S.C., Pascual-Leone A., Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua, Epilepsy Google Scholar

  • [50] Jardri R., Delevoye-Turrell Y., Lucas B., Pins D., Bulot V., Delmaire C., et al., Clinical practice of rTMS reveals a functional dissociation between agency and hallucinations in schizophrenia, Neuropsychologia, 2009, 47, 132–138 http://dx.doi.org/10.1016/j.neuropsychologia.2008.08.006CrossrefGoogle Scholar

  • [51] Jardri R., Lucas B., Delevoye-Turrell Y., Delmaire C., Delion P., Thomas P., et al., An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS, Mol. Psychiatry, 2007, 12, 320 http://dx.doi.org/10.1038/sj.mp.4001968CrossrefGoogle Scholar

  • [52] Bloch Y., Grisaru N., Harel E.V., Beitler G., Faivel N., Ratzoni G., et al., Repetitive transcranial magnetic stimulation in the treatment of depression in adolescents: an open-label study, J. ECT, 2008, 24, 156–159 http://dx.doi.org/10.1097/YCT.0b013e318156aa49CrossrefGoogle Scholar

  • [53] Rotenberg A., Positario-Cabacar D., Bae E.H., Harini C., Pascual-Leone A., Takeoka M., Transient suppression of seizures by repetitive transcranial magnetic stimulation in a case of Rasmussen’s encephalitis, Epilepsy Behav., 2008, 13, 260–262 http://dx.doi.org/10.1016/j.yebeh.2007.12.022CrossrefGoogle Scholar

  • [54] Valle A.C., Dionisio K., Pitskel N.B., Pascual-Leone A., Orsati F., Ferreira M.J., et al., Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity, Dev. Med. Child Neurol., 2007, 49, 534–538 http://dx.doi.org/10.1111/j.1469-8749.2007.00534.xCrossrefGoogle Scholar

  • [55] Fregni F., Boggio P.S., Valle A.C., Otachi P., Thut G., Rigonatti S.P., et al., Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1Hz rTMS in patients with juvenile myoclonic epilepsy, Clin. Neurophysiol., 2006, 117, 1217–1227 http://dx.doi.org/10.1016/j.clinph.2006.02.015CrossrefGoogle Scholar

  • [56] Loo C., McFarquhar T., Walter G., Transcranial magnetic stimulation in adolescent depression, Australas. Psychiatry, 2006, 14, 81–85 CrossrefGoogle Scholar

  • [57] Morales O.G., Henry M.E., Nobler M.S., Wassermann E.M., Lisanby S.H., Electroconvulsive therapy and repetitive transcranial magnetic stimulation in children and adolescents: a review and report of two cases of epilepsia partialis continua, Child Adolesc. Psychiatr. Clin. N. Am., 2005, 14, 193–210 http://dx.doi.org/10.1016/j.chc.2004.07.010CrossrefGoogle Scholar

  • [58] Graff-Guerrero A., Gonzáles-Olvera J., Ruiz-García M., Avila-Ordoñez U., Vaugier V., García-Reyna J.C., rTMS reduces focal brain hyperperfusion in two patients with EPC, Acta Neurol. Scand., 2004, 109, 290–296 http://dx.doi.org/10.1046/j.1600-0404.2003.00222.xCrossrefGoogle Scholar

  • [59] Eyre J.A., Taylor J.P., Villagra F., Smith M., Miller S., Evidence of activitydependent withdrawal of corticospinal projections during human development, Neurology, 2001, 57, 1543–1554 http://dx.doi.org/10.1212/WNL.57.9.1543CrossrefGoogle Scholar

  • [60] Eyre J.A., Smith M., Dabydeen L., Clowry G.J., Petacchi E., Battini R., et al., Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?, Ann. Neurol., 2007, 62, 493–503 http://dx.doi.org/10.1002/ana.21108CrossrefGoogle Scholar

  • [61] Garvey M.A., Ziemann U., Bartko J.J., Denckla M.B., Barker C.A., Wassermann E.M., Cortical correlates of neuromotor development in healthy children, Clin. Neurophysiol., 2003, 114, 1662–1670 http://dx.doi.org/10.1016/S1388-2457(03)00130-5CrossrefGoogle Scholar

  • [62] Muller K., Ebner B., Homberg V., Maturation of fastest afferent and efferent central and peripheral pathways: no evidence for a constancy of central conduction delays, Neurosci. Lett., 1994, 166, 9–12 http://dx.doi.org/10.1016/0304-3940(94)90828-1CrossrefGoogle Scholar

  • [63] Abbruzzese G., Trompetto C., Clinical and research methods for evaluating cortical excitability, J. Clin. Neurophysiol., 2002, 19, 307–321 http://dx.doi.org/10.1097/00004691-200208000-00005CrossrefGoogle Scholar

  • [64] Caramia M.D., Desiato M.T., Cicinelli P., Iani C., Rossini P.M., Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation, Electroencephalogr. Clin. Neurophysiol., 1993, 89, 61–66 http://dx.doi.org/10.1016/0168-5597(93)90086-5CrossrefGoogle Scholar

  • [65] Staudt M., Grodd W., Gerloff C., Erb M., Stitz J., Krageloh-Mann I., Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study, Brain, 2002, 125, 2222–2237 http://dx.doi.org/10.1093/brain/awf227CrossrefGoogle Scholar

  • [66] Muller K., Kass-Iliyya F., Reitz M., Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation, Ann. Neurol., 1997, 42, 705–711 http://dx.doi.org/10.1002/ana.410420506CrossrefGoogle Scholar

  • [67] Martin J.H., Lee S.J., Activity-dependent competition between developing corticospinal terminations, Neuroreport, 1999, 10, 2277–2282 http://dx.doi.org/10.1097/00001756-199908020-00010CrossrefGoogle Scholar

  • [68] Martin J.H., Kably B., Hacking A., Activity-dependent development of cortical axon terminations in the spinal cord and brain stem, Exp. Brain Res., 1999, 125, 184–199 http://dx.doi.org/10.1007/s002210050673CrossrefGoogle Scholar

  • [69] Martin J.H., Friel K.M., Salimi I., Chakrabarty S., Activity- and usedependent plasticity of the developing corticospinal system, Neurosci. Biobehav. Rev., 2007, 31, 1125–1135 http://dx.doi.org/10.1016/j.neubiorev.2007.04.017CrossrefGoogle Scholar

  • [70] Kirton A., Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy, Pediatr. Neurol., 2013, 48, 81–94 http://dx.doi.org/10.1016/j.pediatrneurol.2012.08.001CrossrefGoogle Scholar

  • [71] Werhahn K.J., Kunesch E., Noachtar S., Benecke R., Classen J., Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans, J. Physiol., 1999, 517, 591–597 http://dx.doi.org/10.1111/j.1469-7793.1999.0591t.xCrossrefGoogle Scholar

  • [72] Moll G.H., Heinrich H., Wischer S., Tergau F., Paulus W., Rothenberger A., Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation, Electroencephalogr. Clin. Neurophysiol. Suppl., 1999, 51, 243–249 Google Scholar

  • [73] Ziemann U., TMS and drugs, Clin. Neurophysiol., 2004, 115, 1717–1729 http://dx.doi.org/10.1016/j.clinph.2004.03.006CrossrefGoogle Scholar

  • [74] Mall V., Berweck S., Fietzek U.M., Glocker F. X., Oberhuber U., Walther M., et al., Low level of intracortical inhibition in children shown by transcranial magnetic stimulation, Neuropediatrics, 2004, 35, 120–125 http://dx.doi.org/10.1055/s-2004-815834CrossrefGoogle Scholar

  • [75] Ziemann U., Muellbacher W., Hallett M., Cohen L.G., Modulation of practice-dependent plasticity in human motor cortex, Brain, 2001, 124, 1171–1181 http://dx.doi.org/10.1093/brain/124.6.1171CrossrefGoogle Scholar

  • [76] Heinen F., Glocker F.X., Fietzek U., Meyer B.U., Lucking C.H., Korinthenberg R., Absence of transcallosal inhibition following focal magnetic stimulation in preschool children, Ann. Neurol., 1998, 43, 608–612 http://dx.doi.org/10.1002/ana.410430508CrossrefGoogle Scholar

  • [77] Mineyko A., Kirton A., The black box of perinatal ischemic stroke pathogenesis, J. Child Neurol., 2011, 26, 1154–1162 http://dx.doi.org/10.1177/0883073811408312CrossrefGoogle Scholar

  • [78] Kirton A., deVeber G., Advances in perinatal ischemic stroke, Pediatr. Neurol., 2009, 40, 205–214 http://dx.doi.org/10.1016/j.pediatrneurol.2008.09.018CrossrefGoogle Scholar

  • [79] Kirton A., Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy, Pediatr. Neurol., 2013, 48, 81–94 http://dx.doi.org/10.1016/j.pediatrneurol.2012.08.001CrossrefGoogle Scholar

  • [80] Eyre J.A., Corticospinal tract development and its plasticity after perinatal injury, Neurosci. Biobehav. Rev., 2007, 31, 1136–1149 http://dx.doi.org/10.1016/j.neubiorev.2007.05.011CrossrefGoogle Scholar

  • [81] Staudt M., Reorganization of the developing human brain after early lesions, Dev. Med. Child Neurol., 2007, 49, 564 http://dx.doi.org/10.1111/j.1469-8749.2007.00564.xCrossrefGoogle Scholar

  • [82] Pascual-Leone A., Amedi A., Fregni F., Merabet L.B., The plastic human brain cortex, Annu. Rev. Neurosci., 2005, 28, 377–401 http://dx.doi.org/10.1146/annurev.neuro.27.070203.144216CrossrefGoogle Scholar

  • [83] Pascual-Leone A., Tormos J.M., Keenan J., Tarazona F., Canete C., Catala M.D., Study and modulation of human cortical excitability with transcranial magnetic stimulation, J. Clin. Neurophysiol., 1998, 15, 333–343 http://dx.doi.org/10.1097/00004691-199807000-00005CrossrefGoogle Scholar

  • [84] Adkins-Muir D.L., Jones T.A., Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats, Neurol. Res., 2003, 25, 780–788 http://dx.doi.org/10.1179/016164103771953853CrossrefGoogle Scholar

  • [85] Kleim J.A., Bruneau R., VandenBerg P., MacDonald E., Mulrooney R., Pocock D., Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult, Neurol. Res., 2003, 25, 789–793 http://dx.doi.org/10.1179/016164103771953862CrossrefGoogle Scholar

  • [86] Teskey G.C., Flynn C., Goertzen C.D., Monfils M.H., Young N.A., Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat, Neurol. Res., 2003, 25, 794–800 http://dx.doi.org/10.1179/016164103771953871CrossrefGoogle Scholar

  • [87] Maeda F., Keenan J.P., Tormos J.M., Topka H., Pascual-Leone A., Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation, Clin. Neurophysiol., 2000, 111, 800–805 http://dx.doi.org/10.1016/S1388-2457(99)00323-5CrossrefGoogle Scholar

  • [88] Chen R., Classen J., Gerloff C., Celnik P., Wassermann E.M., Hallett M., et al., Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation, Neurology, 1997, 48, 1398–1403 http://dx.doi.org/10.1212/WNL.48.5.1398CrossrefGoogle Scholar

  • [89] Lisanby S.H., Gutman D., Luber B., Schroeder C., Sackeim H.A., Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials, Biol. Psychiatry, 2001, 49, 460–463 http://dx.doi.org/10.1016/S0006-3223(00)01110-0CrossrefGoogle Scholar

  • [90] Speer A.M., Benson B.E., Kimbrell T.K., Wassermann E.M., Willis M.W., Herscovitsch P., et al., Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET, J. Affect. Disord., 2009, 115, 386–394 http://dx.doi.org/10.1016/j.jad.2008.10.006CrossrefGoogle Scholar

  • [91] Jin X., Wu X., Wang J., Huang B., Wang Q., Zhang T., et al., [Effect of transcranial magnetic stimulation on rehabilitation of motor function in patients with cerebral infarction], Zhonghua Yi Xue Za Zhi, 2002, 82, 534–537 Google Scholar

  • [92] Akamatsu N., Fueta Y., Endo Y., Matsunaga K., Uozumi T., Tsuji S., Decreased susceptibility to pentylenetetrazol-induced seizures after low-frequency transcranial magnetic stimulation in rats, Neurosci. Lett., 2001, 310, 153–156 http://dx.doi.org/10.1016/S0304-3940(01)02116-4CrossrefGoogle Scholar

  • [93] Macdonell R.A., King M.A., Newton M.R., Curatolo J.M., Reutens D.C., Berkovic S.F., Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy, Neurology 2001, 57, 706–708 http://dx.doi.org/10.1212/WNL.57.4.706CrossrefGoogle Scholar

  • [94] Cincotta M., Borgheresi A., Boffi P., Vigliano P., Ragazzoni A., Zaccara G., et al., Bilateral motor cortex output with intended unimanual contraction in congenital mirror movements, Neurology, 2002, 58, 1290–1293 http://dx.doi.org/10.1212/WNL.58.8.1290CrossrefGoogle Scholar

  • [95] Ertas N.K., Gul G., Altunhalka A., Kirbas D., Cortical silent period following transcranial magnetic stimulation in epileptic patients, Epileptic Disord., 2000, 2, 137–140 Google Scholar

  • [96] Groppa S., Siebner H.R., Kurth C., Stephani U., Siniatchkin M., Abnormal response of motor cortex to photic stimulation in idiopathic generalized epilepsy, Epilepsia, 2008, 49, 2022–2029 http://dx.doi.org/10.1111/j.1528-1167.2008.01709.xCrossrefGoogle Scholar

  • [97] Nezu A., Kimura S., Ohtsuki N., Tanaka M., Transcranial magnetic stimulation in benign childhood epilepsy with centro-temporal spikes, Brain Dev., 1997, 19, 134–137 http://dx.doi.org/10.1016/S0387-7604(96)00497-4CrossrefGoogle Scholar

  • [98] Michelucci R., Passarelli D., Riguzzi P., Buzzi A.M., Gardella E., Tassinari C.A., Transcranial magnetic stimulation in partial epilepsy: druginduced changes of motor excitability, Acta Neurol. Scand., 1996, 94, 24–30 http://dx.doi.org/10.1111/j.1600-0404.1996.tb00034.xCrossrefGoogle Scholar

  • [99] Cantello R., Civardi C., Cavalli A., Varrasi C., Tarletti R., Monaco F., et al., Cortical excitability in cryptogenic localization-related epilepsy: interictal transcranial magnetic stimulation studies, Epilepsia, 2000, 41, 694–704 http://dx.doi.org/10.1111/j.1528-1157.2000.tb00230.xCrossrefGoogle Scholar

  • [100] Badawy R.A., Macdonell R.A., Berkovic S.F., Newton M.R., Jackson G.D., Predicting seizure control: cortical excitability and antiepileptic medication, Ann. Neurol., 2010, 67, 64–73 http://dx.doi.org/10.1002/ana.21806CrossrefGoogle Scholar

  • [101] Cantello R., Varrasi C., Tarletti R., Cecchin M., D’Andrea F., Veggiotti P., et al., Ketogenic diet: electrophysiological effects on the normal human cortex, Epilepsia, 2007, 48, 1756–1763 http://dx.doi.org/10.1111/j.1528-1167.2007.01156.xCrossrefGoogle Scholar

  • [102] Rotenberg A., Bae E.H., Muller P.A., Riviello J.J.Jr., Bourgeois B.F., et al., In-session seizures during low-frequency repetitive transcranial magnetic stimulation in patients with epilepsy, Epilepsy Behav., 2009, 16, 353–355 http://dx.doi.org/10.1016/j.yebeh.2009.08.010CrossrefGoogle Scholar

  • [103] Fregni F., Marcolin M.A., Myczkowski M., Amiaz R., Hasey G., Rumi D.O., et al., Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation, Int. J. Neuropsychopharmacol., 2006, 9, 641–654 http://dx.doi.org/10.1017/S1461145705006280CrossrefGoogle Scholar

  • [104] Hsu W.Y., Cheng C.H., Lin M.W., Shih Y.H., Liao K.K., Lin Y.Y., Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation: a meta-analysis, Epilepsy Res., 2011, 96, 231–240 http://dx.doi.org/10.1016/j.eplepsyres.2011.06.002CrossrefGoogle Scholar

  • [105] Lewinsohn P.M., Hops H., Roberts R.E., Seeley J.R., Andrews J.A., Adolescent psychopathology: I. Prevalence and incidence of depression and other DSM-III-R disorders in high school students, J. Abnorm. Psychol., 1993, 102, 133–144 http://dx.doi.org/10.1037/0021-843X.102.1.133CrossrefGoogle Scholar

  • [106] Birmaher B., Ryan N.D., Williamson D.E., Brent D.A., Kaufman J., Dahl R.E., et al., Childhood and adolescent depression: a review of the past 10 years. Part I., J. Am. Acad. Child Adolesc. Psychiatry, 1996, 35, 1427–1439 http://dx.doi.org/10.1097/00004583-199611000-00011Google Scholar

  • [107] Birmaher B., Ryan N.D., Williamson D.E., Brent D.A., Kaufman J., Childhood and adolescent depression: a review of the past 10 years. Part II., J. Am. Acad. Child Adolesc. Psychiatry, 1996, 35, 1575–1583 http://dx.doi.org/10.1097/00004583-199612000-00008Google Scholar

  • [108] Carvalho A.F., Cavalcante J.L., Castelo M.S., Lima M.C., Augmentation strategies for treatment-resistant depression: a literature review, J. Clin. Pharm. Ther., 2007, 32, 415–428 http://dx.doi.org/10.1111/j.1365-2710.2007.00846.xCrossrefGoogle Scholar

  • [109] George M.S., Transcranial magnetic stimulation for the treatment of depression, Expert Rev. Neurother., 2010, 10, 1761–1772 http://dx.doi.org/10.1586/ern.10.95CrossrefGoogle Scholar

  • [110] Garcia K.S., Flynn P., Pierce K.J., Caudle M., Repetitive transcranial magnetic stimulation treats postpartum depression, Brain Stimul., 2010, 3, 36–41 http://dx.doi.org/10.1016/j.brs.2009.06.001CrossrefGoogle Scholar

  • [111] Figiel G.S., Epstein C., McDonald W.M., Amazon-Leece J., Figiel L., Saldivia A., et al., The use of rapid-rate transcranial magnetic stimulation (rTMS) in refractory depressed patients, J. Neuropsychiatry Clin. Neurosci., 1998, 10, 20–25 CrossrefGoogle Scholar

  • [112] Fregni F., Marcolin M.A., Myczkowski M., Amiaz R., Hasey G., Rumi D.O., et al., Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation, Int. J. Neuropsychopharmacol., 2006, 9, 641–654 http://dx.doi.org/10.1017/S1461145705006280CrossrefGoogle Scholar

  • [113] Mayer G., Faivel N., Aviram S., Walter G., Bloch Y., Repetitive transcranial magnetic stimulation in depressed adolescents: experience, knowledge, and attitudes of recipients and their parents, J. ECT, 2012, 28, 104–107 CrossrefGoogle Scholar

  • [114] Gilbert D.L., Isaacs K.M., Augusta M., Macneil L.K., Mostofsky S.H., Motor cortex inhibition: a marker of ADHD behavior and motor development in children, Neurology, 2011, 76, 615–621 http://dx.doi.org/10.1212/WNL.0b013e31820c2ebdCrossrefGoogle Scholar

  • [115] Winterer G., Weinberger D.R., Genes, dopamine and cortical signalto-noise ratio in schizophrenia, Trends Neurosci., 2004, 27, 683–690 http://dx.doi.org/10.1016/j.tins.2004.08.002CrossrefGoogle Scholar

  • [116] Buchmann J., Wolters A., Haessler F., Bohne S., Nordbeck R., Kunesch E., Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD), Clin. Neurophysiol., 2003, 114, 2036–2042 http://dx.doi.org/10.1016/S1388-2457(03)00208-6CrossrefGoogle Scholar

  • [117] Garvey M.A., Barker C.A., Bartko J.J., Denckla M.B., Wassermann E.M., Castellanos F.X., et al., The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder, Clin. Neurophysiol., 2005, 116, 1889–1896 http://dx.doi.org/10.1016/j.clinph.2005.03.018CrossrefGoogle Scholar

  • [118] Buchmann J., Gierow W., Weber S., Hoeppner J., Klauer T., Benecke R., et al., Restoration of disturbed intracortical motor inhibition and facilitation in attention deficit hyperactivity disorder children by methylphenidate, Biol. Psychiatry, 2007, 62, 963–969 http://dx.doi.org/10.1016/j.biopsych.2007.05.010CrossrefGoogle Scholar

  • [119] Weaver L., Rostain A.L., Mace W., Akhtar U., Moss E., O’Reardon J.P., Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study, J. ECT, 2012, 28, 98–103 CrossrefGoogle Scholar

  • [120] Bloch Y., Harel E.V., Aviram S., Govezensky J., Ratzoni G., Levkovitz Y., Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD Subjects: a randomized controlled pilot study, World J. Biol. Psychiatry, 2010, 11, 755–758 http://dx.doi.org/10.3109/15622975.2010.484466CrossrefGoogle Scholar

  • [121] Moll G.H., Wischer S., Heinrich H., Tergau F., Paulus W., Rothenberger A., Deficient motor control in children with tic disorder: evidence from transcranial magnetic stimulation, Neurosci. Lett., 1999, 272, 37–40 http://dx.doi.org/10.1016/S0304-3940(99)00575-3CrossrefGoogle Scholar

  • [122] Gilbert D.L., Bansal A.S., Sethuraman G., Sallee F.R., Zhang J., Lipps T., et al., Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome, Mov. Disord., 2004, 19, 416–425 http://dx.doi.org/10.1002/mds.20044CrossrefGoogle Scholar

  • [123] Paes F., Machado S., Arias-Carrión O., Velasques B., Teixeira S., Cagy M., et al., The value of repetitive transcranial magnetic stimulation (rTMS) for the treatment of anxiety disorders: an integrative review, CNS Neurol. Disord. Drug Targets, 2011, 10, 610–620 http://dx.doi.org/10.2174/187152711796234943CrossrefGoogle Scholar

  • [124] Blom R.M., Figee M., Vulink N., Denys D., Update on repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: different targets, Curr. Psychiatry Rep., 2011, 13, 289–294 http://dx.doi.org/10.1007/s11920-011-0205-3CrossrefGoogle Scholar

  • [125] Dlabac-de Lange J.J., Knegtering R., Aleman A., Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: review and meta-analysis, J. Clin. Psychiatry, 2010, 71, 411–418 http://dx.doi.org/10.4088/JCP.08r04808yelCrossrefGoogle Scholar

  • [126] Walter G., Tormos J.M., Israel J.A., Pascual-Leone A., Transcranial magnetic stimulation in young persons: a review of known cases, J. Child Adolesc. Psychopharmacol., 2001, 11, 69–75 http://dx.doi.org/10.1089/104454601750143483CrossrefGoogle Scholar

  • [127] Fitzgerald P.B., Benitez J., Daskalakis J.Z., De C.A., Kulkarni J., The treatment of recurring auditory hallucinations in schizophrenia with rTMS, World J. Biol. Psychiatry, 2006, 7, 119–122 http://dx.doi.org/10.1080/15622970500474705CrossrefGoogle Scholar

  • [128] Zernikow B., Wager J., Hechler T., Hasan C., Rohr U., Dobe M., et al., Characteristics of highly impaired children with severe chronic pain: a 5-year retrospective study on 2249 pediatric pain patients, BMC Pediatr., 2012, 12, 54 http://dx.doi.org/10.1186/1471-2431-12-54CrossrefGoogle Scholar

  • [129] Brigo F., Storti M., Nardone R., Fiaschi A., Bongiovanni L.G., Tezzon F., et al., Transcranial magnetic stimulation of visual cortex in migraine patients: a systematic review with meta-analysis, J. Headache Pain, 2012, 13, 339–349 http://dx.doi.org/10.1007/s10194-012-0445-6CrossrefGoogle Scholar

  • [130] Siniatchkin M., Reich A.L., Shepherd A.J., van Baalen A, Siebner H.R., Stephani U., Peri-ictal changes of cortical excitability in children suffering from migraine without aura, Pain, 2009, 147, 132–140 http://dx.doi.org/10.1016/j.pain.2009.08.028CrossrefGoogle Scholar

  • [131] Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., Pearlman S.H., et al., Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, doubleblind, parallel-group, sham-controlled trial, Lancet Neurol., 2010, 9, 373–380 http://dx.doi.org/10.1016/S1474-4422(10)70054-5CrossrefGoogle Scholar

  • [132] Barlow K.M., Crawford S., Stevenson A., Sandhu S.S., Belanger F., Dewey D., Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury, Pediatrics, 2010, 126, e374–e381 http://dx.doi.org/10.1542/peds.2009-0925CrossrefGoogle Scholar

  • [133] Demirtas-Tatlidede A., Vahabzadeh-Hagh A.M., Bernabeu M., Tormos J.M., Pascual-Leone A., Noninvasive brain stimulation in traumatic brain injury, J. Head Trauma Rehabil., 2012, 27, 274–292 http://dx.doi.org/10.1097/HTR.0b013e318217df55CrossrefGoogle Scholar

  • [134] Tremblay S., De B.L., Lassonde M., Théoret H., Evidence for the specificity of intracortical inhibitory dysfunction in asymptomatic concussed athletes, J. Neurotrauma, 2011, 28, 493–502 http://dx.doi.org/10.1089/neu.2010.1615CrossrefGoogle Scholar

  • [135] Livingston S.C., Goodkin H.P., Hertel J.N., Saliba E.N., Barth J.T., Ingersoll C.D., Differential rates of recovery after acute sport-related concussion: electrophysiologic, symptomatic, and neurocognitive indices, J. Clin. Neurophysiol., 2012, 29, 23–32 http://dx.doi.org/10.1097/WNP.0b013e318246ae46CrossrefGoogle Scholar

  • [136] Villamar M.F., Santos P.A., Fregni F., Zafonte R., Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury, Neuromodulation, 2012, 15, 326–338 http://dx.doi.org/10.1111/j.1525-1403.2012.00474.xCrossrefGoogle Scholar

  • [137] Bernabeu M., Demirtas-Tatlidede A., Opisso E., Lopez R., Tormos J.M., Pascual-Leone A., Abnormal corticospinal excitability in traumatic diffuse axonal brain injury, J. Neurotrauma, 2009, 26, 2185–2193 http://dx.doi.org/10.1089/neu.2008.0859CrossrefGoogle Scholar

  • [138] Dobson C.B., Villagra F., Clowry G.J., Smith M., Kenwrick S., Donnai D., et al., Abnormal corticospinal function but normal axonal guidance in human L1CAM mutations, Brain, 2001, 124, 2393–2406 http://dx.doi.org/10.1093/brain/124.12.2393CrossrefGoogle Scholar

  • [139] Nezu A., Kimura S., Takeshita S., Tanaka M., Characteristic response to transcranial magnetic stimulation in Rett syndrome, Electroencephalogr. Clin. Neurophysiol., 1998, 109, 100–103 http://dx.doi.org/10.1016/S0924-980X(97)00081-7CrossrefGoogle Scholar

  • [140] Nardone R., Bergmann J., Lochner P., Caleri F., Kunz A., Staffen W., et al., Modafinil reverses hypoexcitability of the motor cortex in narcoleptic patients: a TMS study, Sleep Med., 2010, 11, 870–875 http://dx.doi.org/10.1016/j.sleep.2010.05.007CrossrefGoogle Scholar

  • [141] Wu S.W., Shahana N., Huddleston D.A., Lewis A.N., Gilbert D.L., Safety and tolerability of theta-burst transcranial magnetic stimulation in children, Dev. Med. Child Neurol., 2012, 54, 636–639 http://dx.doi.org/10.1111/j.1469-8749.2012.04300.xCrossrefGoogle Scholar

  • [142] Wray C.D., Blakely T.M., Poliachik S.L., Poliakov A., McDaniel S.S., Novotny E.J., et al., Multimodality localization of the sensorimotor cortex in pediatric patients undergoing epilepsy surgery, J. Neurosurg. Pediatr., 2012, 10, 1–6 http://dx.doi.org/10.3171/2012.3.PEDS11554CrossrefGoogle Scholar

  • [143] Coburger J., Karhu J., Bittl M., Hopf N.J., First preoperative functional mapping via navigated transcranial magnetic stimulation in a 3-yearold boy, J. Neurosurg. Pediatr., 2012, 9, 660–664 http://dx.doi.org/10.3171/2012.2.PEDS11426CrossrefGoogle Scholar

  • [144] Juenger H., Ressel V., Braun C., Ernemann U., Schuhmann M., Krägeloh-Mann I., et al., Misleading functional magnetic resonance imaging mapping of the cortical hand representation in a 4-yearold boy with an arteriovenous malformation of the central region, J. Neurosurg. Pediatr., 2009, 4, 333–338 http://dx.doi.org/10.3171/2009.5.PEDS08466CrossrefGoogle Scholar

  • [145] Forster M.T., Hattingen E., Senft C., Gasser T., Seifert V., Szelenyi A., Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors, Neurosurgery, 2011, 68, 1317–1324 Google Scholar

  • [146] Auvichayapat N., Rotenberg A., Gersner R., et al., Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy, Brain Stimul., 2013, doi: 10.1016/j.brs.2013.01.0009 [Epub ahead of print] CrossrefGoogle Scholar

  • [147] Varga E.T., Terney D., Atkins M.D., Nikanorova M., Jeppesen D.S., Uldall P., et al., Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study, Epilepsy Res., 2011, 97, 142–145 http://dx.doi.org/10.1016/j.eplepsyres.2011.07.016CrossrefGoogle Scholar

  • [148] Young S.J., Bertucco M., Sheehan-Stross R., Sanger T.D., Cathodal transcranial direct current stimulation in children with dystonia a pilot open-label trial, J. Child Neurol., 2012, doi:10.1177/0883073812460092 [Epub ahead of print] CrossrefGoogle Scholar

  • [149] Pinchuk D., Pinchuk O., Sirbiladze K., Shugar O., Clinical effectiveness of primary and secondary headache treatment by transcranial direct current stimulation, Front. Neurol., 2013, 4, 25 http://dx.doi.org/10.3389/fneur.2013.00025CrossrefGoogle Scholar

  • [150] Osborne L., Savant for a day, NY Times Magazine, 2003, June 22 Google Scholar

  • [151] Illes J., Gallo M., Kirschen M.P., An ethics perspective on transcranial magnetic stimulation (TMS) and human neuromodulation, Behav. Neurol., 2006, 17, 149–157 CrossrefGoogle Scholar

  • [152] Cohen K.R., Levy N., O’Shea J., Shea N., Savulescu J., The neuroethics of non-invasive brain stimulation, Curr. Biol., 2012, 22, R108–R111 http://dx.doi.org/10.1016/j.cub.2012.01.013CrossrefGoogle Scholar

  • [153] McKinley R.A., Bridges N., Walters C.M., Nelson J., Modulating the brain at work using noninvasive transcranial stimulation, Neuroimage, 2012, 59, 129–137 http://dx.doi.org/10.1016/j.neuroimage.2011.07.075CrossrefGoogle Scholar

About the article

Published Online: 2013-06-09

Published in Print: 2013-06-01

Citation Information: Translational Neuroscience, Volume 4, Issue 2, Pages 217–233, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0116-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Adam Kirton and Gabrielle deVeber
Stroke, 2013, Volume 44, Number 11, Page 3265
AM Gago Ageitos, MJ Durán Maseda, M Vidal Millares, J López-Moríñigo, and J Cudeiro Mazaira
Revista de Psiquiatría Infanto-Juvenil, 2016, Volume 33, Number 4, Page 447
Christopher Todd Maley, Jonathan Essary Becker, and Elizabeth Shultz
Child and Adolescent Psychiatric Clinics of North America, 2018
Deniz Doruk Camsari, Melissa Kirkovski, and Paul E. Croarkin
Psychiatric Clinics of North America, 2018, Volume 41, Number 3, Page 465
Cristina Simon-Martinez, Lisa Mailleux, Els Ortibus, Anna Fehrenbach, Giuseppina Sgandurra, Giovanni Cioni, Kaat Desloovere, Nicole Wenderoth, Philippe Demaerel, Stefan Sunaert, Guy Molenaers, Hilde Feys, and Katrijn Klingels
BMC Pediatrics, 2018, Volume 18, Number 1
Jeffrey B. Russ, Akila M. Nallappan, and Amy Robichaux-Viehoever
Seminars in Pediatric Neurology, 2018
Dragan Poljak, Mario Cvetković, Vicko Dorić, Ivana Zulim, Zoran Đogaš, Maja Rogić Vidaković, Jens Haueisen, and Khalil El Khamlichi Drissi
International Journal of E-Health and Medical Communications, 2018, Volume 9, Number 1, Page 65
Patrick Ciechanski, Ephrem Zewdie, and Adam Kirton
Journal of Neurophysiology, 2017, Volume 118, Number 1, Page 140
Laura Säisänen, Petro Julkunen, Timo Lakka, Virpi Lindi, Mervi Könönen, and Sara Määttä
Neurophysiologie Clinique, 2017
Dragan Poljak, Mario Cvetkovic, Oriano Bottauscio, Akimasa Hirata, Ilkka Laakso, Esra Neufeld, Sylvain Reboux, Craig Warren, Antonios Giannopoulos, and Fumie Costen
IEEE Transactions on Electromagnetic Compatibility, 2018, Volume 60, Number 2, Page 328
Andrea M. Kuczynski, Sean P. Dukelow, Jennifer A. Semrau, and Adam Kirton
Neurorehabilitation and Neural Repair, 2016, Volume 30, Number 8, Page 762
Jonathan Iwry, David B. Yaden, and Andrew B. Newberg
Frontiers in Human Neuroscience, 2017, Volume 11
Jonathan C. Lee, Charles P. Lewis, Zafiris J. Daskalakis, and Paul E. Croarkin
Frontiers in Psychiatry, 2017, Volume 8
Photios Anninos, Athanasios Chatzimichael, Adam Adamopoulos, Athanasia Kotini, and Nicolaos Tsagas
Journal of Integrative Neuroscience, 2016, Volume 15, Number 04, Page 497
Mustafa Q. Hameed, Sameer C. Dhamne, Roman Gersner, Harper L. Kaye, Lindsay M. Oberman, Alvaro Pascual-Leone, and Alexander Rotenberg
Current Neurology and Neuroscience Reports, 2017, Volume 17, Number 2
Ephrem Zewdie, Omar Damji, Patrick Ciechanski, Trevor Seeger, and Adam Kirton
Neurorehabilitation and Neural Repair, 2017, Volume 31, Number 3, Page 261
Ulrich Palm, Felix M. Segmiller, Ann Natascha Epple, Franz-Joseph Freisleder, Nikolaos Koutsouleris, Gerd Schulte-Körne, and Frank Padberg
Journal of Neural Transmission, 2016, Volume 123, Number 10, Page 1219
M. Cvetković, D. Poljak, M. Rogić Vidaković, and Z. Ðogaš
Journal of Electromagnetic Waves and Applications, 2016, Volume 30, Number 14, Page 1820
Helen L. Carlson, Zeanna Jadavji, Aleksandra Mineyko, Omar Damji, Jacquie Hodge, Jenny Saunders, Mia Hererro, Michele Nowak, Rebecca Patzelt, Anya Mazur-Mosiewicz, Frank P. MacMaster, and Adam Kirton
Brain and Language, 2016, Volume 159, Page 23
Douglas D’Agati and Irving M. Reti
Current Behavioral Neuroscience Reports, 2016, Volume 3, Number 2, Page 122
Ellen Jaspers, Winston D. Byblow, Hilde Feys, and Nicole Wenderoth
Frontiers in Pediatrics, 2016, Volume 3
Lindsay M. Oberman, Peter G. Enticott, Manuel F. Casanova, Alexander Rotenberg, Alvaro Pascual-Leone, and James T. McCracken
Autism Research, 2016, Volume 9, Number 2, Page 184
C. Estrada, F.J. Fernández-Gómez, D. López, A. Gonzalez-Cuello, I. Tunez, F. Toledo, O. Blin, R. Bordet, J.C. Richardson, E. Fernandez-Villalba, and M.T. Herrero
Neurobiology of Learning and Memory, 2015, Volume 125, Page 274
Vera Moliadze, Saskia Andreas, Ekaterina Lyzhko, Till Schmanke, Tea Gurashvili, Christine M. Freitag, and Michael Siniatchkin
Brain Research Bulletin, 2015, Volume 119, Page 25
V B Voitenkov, A V Klimkin, N V Skripchenko, N F Pulman, and M V Ivanova
Spinal Cord, 2016, Volume 54, Number 3, Page 226
Melissa G. Chung and Warren D. Lo
Archives of Physical Medicine and Rehabilitation, 2015, Volume 96, Number 4, Page S129
Omar Damji, Jamie Keess, and Adam Kirton
Developmental Medicine & Child Neurology, 2015, Volume 57, Number 6, Page 548
Vera Moliadze, Till Schmanke, Saskia Andreas, Ekaterina Lyzhko, Christine M. Freitag, and Michael Siniatchkin
Clinical Neurophysiology, 2015, Volume 126, Number 7, Page 1392
Lindsay M. Oberman, Alvaro Pascual-Leone, and Alexander Rotenberg
Frontiers in Human Neuroscience, 2014, Volume 8
Douglas Cheyne, Cecilia Jobst, Graciela Tesan, Stephen Crain, and Blake Johnson
Human Brain Mapping, 2014, Volume 35, Number 9, Page 4858

Comments (0)

Please log in or register to comment.
Log in