Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Astrocytes: Emerging stars in leukodystrophy pathogenesis

Angela Lanciotti
  • Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Brignone
  • Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrico Bertini
  • Unit of Neurodegenerative Disorders Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamara Petrucci
  • Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Aloisi
  • Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Ambrosini
  • Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-09 | DOI: https://doi.org/10.2478/s13380-013-0118-1


Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander’s disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.

Keywords: Leukodystrophies; Glial cells; Myelin; Ion homeostasis; CNS diseases; Alexander’s disease; Megalencephalic leukoencephalopathy with subcortical cysts (MLC); Vanishing white matter disease

  • [1] Virchow R., Cellular pathology as based upon physiological and pathological histology, translated from German by Chance B., 1859, 2nd ed., reproduced by Dover Publications, New York, 1971, 356–382 Google Scholar

  • [2] Golgi C., Sulla struttura della sostanza grigia del cervello (comunicazione preventiva), Gazzetta Medica Italiana, Lombardia, 1873, 33, 244–246 Google Scholar

  • [3] Golgi C., Opera omnia, Hoepli, Milano, 1903 Google Scholar

  • [4] Ramon Y., Cajal S., Histologie du systeme nerveux de l’homme et des vertebres, Maloine, Paris, 1909 Google Scholar

  • [5] Peters A., Palay S.L., Webster H.F., The fine structure of the nervous system: the neurons and supporting cells, W.B. Saunders, Philadelphia, 1976, 232–248 Google Scholar

  • [6] Bignami A., Stoolmiller A.C., Astroglia-specific protein (GFA) in clonal cell lines derived from the G26 mouse glioma, Brain Res., 1979, 163, 353–357 http://dx.doi.org/10.1016/0006-8993(79)90366-4CrossrefGoogle Scholar

  • [7] De Keyser J., Mostert J.P., Koch M.W. J., Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders, Neurol. Sci., 2008, 267, 3–16 http://dx.doi.org/10.1016/j.jns.2007.08.044CrossrefGoogle Scholar

  • [8] Powell E.M., Geller H.M., Dissection of astrocyte-mediated cues in neuronal guidance and process extension, Glia, 1999, 26, 73–83 http://dx.doi.org/10.1002/(SICI)1098-1136(199903)26:1<73::AID-GLIA8>3.0.CO;2-SCrossrefGoogle Scholar

  • [9] Zaheer A., Zhong W., Uc E.Y., Moser D.R., Lim R., Expression of mRNAs of multiple growth factors and receptors by astrocytes and glioma cells: detection with reverse transcription-polymerase chain reaction, Cell. Mol. Neurobiol., 1995, 15, 221–37 http://dx.doi.org/10.1007/BF02073330CrossrefGoogle Scholar

  • [10] Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A., Control of synapse number by glia, Science, 2001, 291, 657–661 http://dx.doi.org/10.1126/science.291.5504.657CrossrefGoogle Scholar

  • [11] Christopherson K.S., Ullian E.M., Stokes C.C., Mullowney C.E., Hell J.W., Agah A., et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis, Cell, 2005, 120, 421–433 http://dx.doi.org/10.1016/j.cell.2004.12.020CrossrefGoogle Scholar

  • [12] Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., et al., The classical complement cascade mediates CNS synapse elimination, Cell, 2007, 131, 1164–1178 http://dx.doi.org/10.1016/j.cell.2007.10.036CrossrefGoogle Scholar

  • [13] Allaman I., Belanger M., Magistretti P.J., Astrocyte-neuron metabolic relationships: for better and worse, Trends Neurosci., 2011, 34, 75–87 http://dx.doi.org/10.1016/j.tins.2010.12.001CrossrefGoogle Scholar

  • [14] Bushong E.A., Martone M.E., Jones Y.Z., Ellisman M.H., Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J. Neurosci., 2002, 22, 183–192 Google Scholar

  • [15] Halassa M.M., Fellin T., Takano H., Dong J.H., Haydon P.G., Synaptic islands defined by the territory of a single astrocyte, J. Neurosci., 2007, 27, 6473–6477 http://dx.doi.org/10.1523/JNEUROSCI.1419-07.2007CrossrefGoogle Scholar

  • [16] Rothstein J.D., Dykes-Hoberg M., Pardo C.A., Bristol L.A., Jin L., Kuncl R.W., et al., Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron, 1996, 16, 675–686 http://dx.doi.org/10.1016/S0896-6273(00)80086-0CrossrefGoogle Scholar

  • [17] Rauen T., Taylor W.R., Kuhlbrodt K., Wiessner M., High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance, Cell Tissue Res., 1998, 291, 19–31 http://dx.doi.org/10.1007/s004410050976CrossrefGoogle Scholar

  • [18] Verkhratsky A., Kirchhoff F., NMDA receptors in glia, Neuroscientist, 2007, 13, 28–37 http://dx.doi.org/10.1177/1073858406294270CrossrefGoogle Scholar

  • [19] Bak L.K., Schousboe A., Waagepetersen H.S., The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer, J. Neurochem., 2006, 98, 641–53 http://dx.doi.org/10.1111/j.1471-4159.2006.03913.xCrossrefGoogle Scholar

  • [20] McKenna M.C., The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain, J. Neurosci. Res., 2007, 85, 3347–3358 http://dx.doi.org/10.1002/jnr.21444CrossrefGoogle Scholar

  • [21] Kimelberg H.K., Receptors on astrocytes — what possible functions?, Neurochem. Int., 1995, 26, 27–40 http://dx.doi.org/10.1016/0197-0186(94)00118-ECrossrefGoogle Scholar

  • [22] Perea G., Navarrete M., Araque A., Tripartite synapses: astrocytes process and control synaptic information, Trends Neurosci., 2009, 32, 421–431 http://dx.doi.org/10.1016/j.tins.2009.05.001CrossrefGoogle Scholar

  • [23] Shigetomi E., Bowser D.N., Sofroniew M.V., Khakh B.S., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J. Neurosci., 2008, 28, 6659–6663 http://dx.doi.org/10.1523/JNEUROSCI.1717-08.2008CrossrefGoogle Scholar

  • [24] Haydon P.G., Carmignoto G., Astrocyte control of synaptic transmission and neurovascular coupling, Physiol. Rev., 2006, 86, 1009–1031 http://dx.doi.org/10.1152/physrev.00049.2005CrossrefGoogle Scholar

  • [25] Zorec R., Araque A., Carmignoto G., Haydon P.G., Verkhratsky A., Parpura V., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro., 2012, 4, e00080 http://dx.doi.org/10.1042/AN20110061CrossrefGoogle Scholar

  • [26] Malarkey E.B., Parpura V., Mechanisms of glutamate release from astrocytes, Neurochem. Int., 2008, 52, 142–1454 http://dx.doi.org/10.1016/j.neuint.2007.06.005CrossrefGoogle Scholar

  • [27] Evanko D.S., Zhang Q., Zorec R., Haydon P.G., Defining pathways of loss and secretion of chemical messengers from astrocytes, Glia, 2004, 47, 233–240 http://dx.doi.org/10.1002/glia.20050CrossrefGoogle Scholar

  • [28] Garcia-Segura L.M., Melcangi R.C., Steroids and glial cell function, Glia, 2006, 54, 485–498 http://dx.doi.org/10.1002/glia.20404CrossrefGoogle Scholar

  • [29] Stellwagen D., Malenka R.C., Synaptic scaling mediated by glial TNFalpha, Nature, 2006, 440, 1054–1059 http://dx.doi.org/10.1038/nature04671CrossrefGoogle Scholar

  • [30] Abi-Saab W.M., Maggs D.G., Jones T., Jacob R., Srihari V., Thompson J., et al., Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia, J. Cereb. Blood Flow Metab., 2002, 22, 271–279 http://dx.doi.org/10.1097/00004647-200203000-00004CrossrefGoogle Scholar

  • [31] Turner D.A., Adamson D.C., Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism, J. Neuropathol. Exp. Neurol., 2011, 70, 167–176 http://dx.doi.org/10.1097/NEN.0b013e31820e1152CrossrefGoogle Scholar

  • [32] Pellerin L., Magistretti P.J., Sweet sixteen for ANLS, J. Cereb. Blood Flow. Metab., 2012, 32, 1152–1166 http://dx.doi.org/10.1038/jcbfm.2011.149CrossrefGoogle Scholar

  • [33] Bélanger M., Allaman I., Magistretti P.J., Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab., 2011, 14, 724–738 http://dx.doi.org/10.1016/j.cmet.2011.08.016CrossrefGoogle Scholar

  • [34] Dienel G.A., Brain lactate metabolism: the discoveries and the controversies, J. Cereb. Blood Flow Metab., 2012, 32, 1107–1138 http://dx.doi.org/10.1038/jcbfm.2011.175CrossrefGoogle Scholar

  • [35] Brown A.M., Baltan Tekkok S., Ransom B.R., Energy transfer from astrocytes to axons: the role of CNS glycogen, Neurochem. Int., 2004, 45, 529–536 http://dx.doi.org/10.1016/j.neuint.2003.11.005CrossrefGoogle Scholar

  • [36] Tsacopoulos M., Magistretti P.J., Metabolic coupling between glia and neurons, J. Neurosci., 1996, 16, 877–885 Google Scholar

  • [37] Amaral A.I., Effects of hypoglycaemia on neuronal metabolism in the adult brain: role of alternative substrates to glucose, J. Inherit. Metab. Dis., 2012, [Epub ahead of print] doi: 10.1007/s10545-012-9553-3 CrossrefGoogle Scholar

  • [38] Magistretti P.J., Pellerin L., Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes, Cereb.Cortex., 1996, 6, 50–61 http://dx.doi.org/10.1093/cercor/6.1.50CrossrefGoogle Scholar

  • [39] Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353 http://dx.doi.org/10.1016/j.nurt.2010.07.006CrossrefGoogle Scholar

  • [40] Sofroniew M.V., Vinters H.V., Astrocytes: biology and pathology, Acta Neuropathol., 2010, 119, 7–35 http://dx.doi.org/10.1007/s00401-009-0619-8CrossrefGoogle Scholar

  • [41] Gardner-Medwin A.R., Analysis of potassium dynamics in mammalian brain tissue, J. Physiol., 1983, 335, 393–426 Google Scholar

  • [42] Walz W., Role of astrocytes in the clearance of excess extracellular potassium, Neurochem. Int., 2000, 36, 291–300 http://dx.doi.org/10.1016/S0197-0186(99)00137-0CrossrefGoogle Scholar

  • [43] Kofuji P., Newman E.A., Potassium buffering in the central nervous system, Neuroscience, 2004, 129, 1045–1056 http://dx.doi.org/10.1016/j.neuroscience.2004.06.008CrossrefGoogle Scholar

  • [44] Djukic B., Casper K.B., Philpot B.D., Chin L.S., McCarthy K.D., Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced shortterm synaptic potentiation, J. Neurosci., 2007, 27, 11354–1165 http://dx.doi.org/10.1523/JNEUROSCI.0723-07.2007CrossrefGoogle Scholar

  • [45] Butt A.M., Kalsi A., Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions, J. Cell. Mol. Med., 2006, 10, 33–44 http://dx.doi.org/10.1111/j.1582-4934.2006.tb00289.xCrossrefGoogle Scholar

  • [46] D’Ambrosio R., Gordon D.S., Winn H.R., Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus, J. Neurophysiol., 2002, 87, 87–102 Google Scholar

  • [47] Wang D.D., Bordey A., The astrocyte odyssey, Prog. Neurobiol., 2008, 86, 342–367 Google Scholar

  • [48] Amzica F., Massimini M., Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex, Cereb. Cortex., 2002, 12, 1101–1113 http://dx.doi.org/10.1093/cercor/12.10.1101CrossrefGoogle Scholar

  • [49] Peters A., Palay S.L., Webster H.D., The fine structure of the nervous system, 3rd ed., Oxford University Press, New York, 1991 Google Scholar

  • [50] Abbott N.J., Ronnback L., Hansson E., Astrocyte-endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 2006, 7, 41–53 http://dx.doi.org/10.1038/nrn1824CrossrefGoogle Scholar

  • [51] Pellerin L., Magistretti P.J., Neuroenergetics: calling upon astrocytes to satisfy hungry neurons, Neuroscientist, 2004, 10, 53–62 http://dx.doi.org/10.1177/1073858403260159CrossrefGoogle Scholar

  • [52] Connors N.C., Adams M.E., Froehner S.C., Kofuji P., The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia, J. Biol. Chem., 2004, 279, 28387–28392 http://dx.doi.org/10.1074/jbc.M402604200CrossrefGoogle Scholar

  • [53] Dalloz C., Sarig R., Fort P., Yaffe D., Bordais A., Pannicke T., et al., Targeted inactivation of dystrophin gene product Dp71: phenotypic impact in mouse retina, Hum. Mol. Genet., 2003, 12, 1543–54 http://dx.doi.org/10.1093/hmg/ddg170CrossrefGoogle Scholar

  • [54] Amiry-Moghaddam M., Ottersen O.P., The molecular basis of water transport in the brain, Nat. Rev. Neurosci., 2003, 4, 991–1001 http://dx.doi.org/10.1038/nrn1252CrossrefGoogle Scholar

  • [55] Benfenati V., Amiry-Moghaddam M., Caprini M., Mylonakou M.N., Rapisarda C., Ottersen O.P., et al., Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes, Neuroscience, 2007, 148, 876–892 http://dx.doi.org/10.1016/j.neuroscience.2007.06.039CrossrefGoogle Scholar

  • [56] Ridder M.C., Boor I., Lodder J.C., Postma N.L., Capdevila-Nortes X., Duarri A., et al., Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation, Brain, 2011, 134, 3342–3354 http://dx.doi.org/10.1093/brain/awr255CrossrefGoogle Scholar

  • [57] Ernest N.J., Weaver A.K., Van Duyn L.B., Sontheimer H.W., Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells, Am. J. Physiol. Cell. Physiol., 2005, 288, C1451–C1460 http://dx.doi.org/10.1152/ajpcell.00503.2004CrossrefGoogle Scholar

  • [58] Teijido O., Martínez A., Pusch M., Zorzano A., Soriano E., Del Río J.A., et al., Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts, Hum. Mol. Genet., 2004, 13, 2581–2594 http://dx.doi.org/10.1093/hmg/ddh291CrossrefGoogle Scholar

  • [59] Walz W., Chloride/anion channels in glial cell membranes, Glia, 2002, 40, 1–10 http://dx.doi.org/10.1002/glia.10125CrossrefGoogle Scholar

  • [60] Hayashi Y., Nomura M., Yamagishi S., Harada S., Yamashita J., Yamamoto H., Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes, Glia, 1997, 19, 13–26 http://dx.doi.org/10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.0.CO;2-BCrossrefGoogle Scholar

  • [61] Nico B., Ribatti D., Morphofunctional aspects of the blood-brain barrier, Curr. Drug Metab., 2012, 13, 50–60 http://dx.doi.org/10.2174/138920012798356970CrossrefGoogle Scholar

  • [62] Mi H., Haeberle H., Barres B.A., Induction of astrocyte differentiation by endothelial cells, J. Neurosci., 2001, 21, 1538–1547 Google Scholar

  • [63] Iadecola C., Nedergaard M., Glial regulation of the cerebral microvasculature, Nat. Neurosci., 2007, 10, 1369–1376 http://dx.doi.org/10.1038/nn2003CrossrefGoogle Scholar

  • [64] Koehler R.C., Roman R.J., Harder D.R., Astrocytes and the regulation of cerebral blood flow, Trends Neurosci., 2009, 32, 160–169 http://dx.doi.org/10.1016/j.tins.2008.11.005CrossrefGoogle Scholar

  • [65] Schummers J., Yu H., Sur M., Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex, Science, 2008, 320, 1638–1643 http://dx.doi.org/10.1126/science.1156120CrossrefGoogle Scholar

  • [66] Petzold G.C., Murthy V.N., Role of astrocytes in neurovascular coupling, Neuron, 2011, 71, 782–97 http://dx.doi.org/10.1016/j.neuron.2011.08.009CrossrefGoogle Scholar

  • [67] Carmignoto G., Gómez-Gonzalo M., The contribution of astrocyte signalling to neurovascular coupling, Brain Res. Rev., 2010, 63, 138–48 http://dx.doi.org/10.1016/j.brainresrev.2009.11.007CrossrefGoogle Scholar

  • [68] Yeager M., Harris A.L., Gap junction channel structure in the early 21st century: facts and fantasies, Curr. Opin. Cell. Biol., 2007, 19, 521–528 http://dx.doi.org/10.1016/j.ceb.2007.09.001CrossrefGoogle Scholar

  • [69] Theis M., Giaume C., Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res., 2012, 1487, 88–98 http://dx.doi.org/10.1016/j.brainres.2012.06.045CrossrefGoogle Scholar

  • [70] Dere E, Zlomuzica A., The role of gap junctions in the brain in health and disease, Neurosci. Biobehav. Rev., 2012, 36, 206–217 http://dx.doi.org/10.1016/j.neubiorev.2011.05.015CrossrefGoogle Scholar

  • [71] Volterra A., Meldolesi J., Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci., 2005, 6, 626–640 http://dx.doi.org/10.1038/nrn1722CrossrefGoogle Scholar

  • [72] Scemes E., Giaume C., Astrocyte calcium waves: what they are and what they do, Glia, 2006, 54, 716–725 http://dx.doi.org/10.1002/glia.20374CrossrefGoogle Scholar

  • [73] Charles A., Teaching resources. Glial intercellular waves, Sci. STKE, 2005, 290, tr19 Google Scholar

  • [74] Bernardinelli Y., Magistretti P.J., Chatton J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. USA, 2004, 101, 14937–14942 http://dx.doi.org/10.1073/pnas.0405315101CrossrefGoogle Scholar

  • [75] Parpura V., Verkhratsky A., Homeostatic function of astrocytes: Ca(2+) and Na(+) signaling, Transl. Neurosci., 2012, 3, 334–344 http://dx.doi.org/10.2478/s13380-012-0040-yCrossrefGoogle Scholar

  • [76] Dreyfus C.F., Dai X., Lercher L.D., Racey B.R., Friedman W.J., Black I.B., Expression of neurotrophins in the adult spinal cord in vivo, J. Neurosci. Res., 1999, 56, 1–7 http://dx.doi.org/10.1002/(SICI)1097-4547(19990401)56:1<1::AID-JNR1>3.0.CO;2-3CrossrefGoogle Scholar

  • [77] Schwartz J.P., Taniwaki T., Messing A., Brenner M., Somatostatin as a trophic factor. Analysis of transgenic mice overexpressing somatostatin in astrocytes, Ann. N.Y. Acad. Sci., 1996, 22, 29–35 http://dx.doi.org/10.1111/j.1749-6632.1996.tb15109.xCrossrefGoogle Scholar

  • [78] Bögler O., Wren D., Barnett S.C., Land H., Noble M., Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, Proc. Natl. Acad. Sci. USA, 1990, 87, 6368–63672 http://dx.doi.org/10.1073/pnas.87.16.6368Google Scholar

  • [79] Noble M., Murray K., Stroobant P., Waterfield M.D., Riddle P., Plateletderived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell, Nature, 1988, 333, 560–562 http://dx.doi.org/10.1038/333560a0CrossrefGoogle Scholar

  • [80] Richardson W.D., Pringle N., Mosley M.J., Westermark B., Dubois-Dalcq M., A role for platelet-derived growth factor in normal gliogenesis in the central nervous system, Cell, 1988, 53, 309–319 http://dx.doi.org/10.1016/0092-8674(88)90392-3CrossrefGoogle Scholar

  • [81] Barres B.A., Schmid R., Sendnter M., Raff M.C., Multiple extracellular signals are required for long-term oligodendrocyte survival, Development, 1993, 118, 283–295 Google Scholar

  • [82] Sendtner M., Kreutzberg G.W., Thoenen H., Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy, Nature, 1990, 345, 440–441 http://dx.doi.org/10.1038/345440a0CrossrefGoogle Scholar

  • [83] Chernausek S.D., Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication, J. Neurosci. Res., 1993, 34, 189–197 http://dx.doi.org/10.1002/jnr.490340206CrossrefGoogle Scholar

  • [84] Barnett S.C., Linington C., Myelination: Do Astrocytes Play a Role?, Neuroscientist, 2012, http://nro.sagepub.com/content/early/2012/11/05/1073858412465655 Google Scholar

  • [85] Blakemore W.F., Crang A.J., The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord, J. Neurocytol., 1989, 18, 519–528 http://dx.doi.org/10.1007/BF01474547CrossrefGoogle Scholar

  • [86] Franklin R.J., Crang A.J., Blakemore W.F., Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord, J. Neurocytol., 1991, 20, 420–430 http://dx.doi.org/10.1007/BF01355538CrossrefGoogle Scholar

  • [87] Sorensen A., Moffat K., Thomson C., Barnett S.C., Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro, Glia, 2008, 56, 750–63 http://dx.doi.org/10.1002/glia.20650CrossrefGoogle Scholar

  • [88] Nash B., Thomson C.E., Linington C., Arthur A.T., McClure J.D., McBride M.W., et al., Functional duality of astrocytes in myelination, J. Neurosci., 2011, 31, 13028–13038 http://dx.doi.org/10.1523/JNEUROSCI.1449-11.2011CrossrefGoogle Scholar

  • [89] Ishibashi T., Dakin K.A., Stevens B., Lee P.R., Kozlov S.V., Stewart C.L., et al., Astrocytes promote myelination in response to electrical impulses, Neuron, 2006, 49, 823–932 http://dx.doi.org/10.1016/j.neuron.2006.02.006CrossrefGoogle Scholar

  • [90] Kleopa K.A., Orthmann-Murphy J., Sargiannidou I., Gap junction disorders of myelinating cells, Rev. Neurosci., 2010, 21, 397–419 Google Scholar

  • [91] Tress O., Maglione M., Zlomuzica A., May D., Dicke N., Degen J., et al., Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacherlike disease in humans, PLoS Genet., 2011, 7, e1002146 http://dx.doi.org/10.1371/journal.pgen.1002146CrossrefGoogle Scholar

  • [92] Lutz S.E., Zhao Y., Gulinello M., Lee S.C., Raine C.S., Brosnan C.F., Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation, J. Neurosci., 2009, 29, 7743–7752 http://dx.doi.org/10.1523/JNEUROSCI.0341-09.2009CrossrefGoogle Scholar

  • [93] Verkhratsky A., Olabarria M., Noristani H.N., Yeh C.Y., Rodriguez J.J., Astrocytes in Alzheimer’s disease, Neurotherapeutics, 2010, 7, 399–412 http://dx.doi.org/10.1016/j.nurt.2010.05.017CrossrefGoogle Scholar

  • [94] Coulter D.A., Eid T., Astrocytic regulation of glutamate homeostasis in epilepsy, Glia, 2012, 60, 1215–1226 http://dx.doi.org/10.1002/glia.22341CrossrefGoogle Scholar

  • [95] Rothstein J.D., Current hypotheses for the underlying biology of amyotrophic lateral sclerosis, Ann. Neurol., 2009, 65Suppl 1, S3–S9 http://dx.doi.org/10.1002/ana.21543CrossrefGoogle Scholar

  • [96] Faideau M., Kim J., Cormier K., Gilmore R., Welch M., Auregan G., et al., In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects, Hum. Mol. Genet., 2010, 19, 3053–3067 http://dx.doi.org/10.1093/hmg/ddq212CrossrefGoogle Scholar

  • [97] Simpson J.E., Ince P.G., Lace G., Forster G., Shaw P.J., Matthews F., et al., Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain, Neurobiol. Aging, 2010, 31, 578–590 http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.015CrossrefGoogle Scholar

  • [98] Wang Y., Qin Z.H., Molecular and cellular mechanisms of excitotoxic neuronal death, Apoptosis, 2010, 15, 1382–1402 http://dx.doi.org/10.1007/s10495-010-0481-0CrossrefGoogle Scholar

  • [99] Carmignoto G., Haydon, P.G., Astrocyte calcium signaling and epilepsy, Glia, 2012, 60, 1227–1233 http://dx.doi.org/10.1002/glia.22318CrossrefGoogle Scholar

  • [100] Schroder W., Seifert G., Huttmann K., Hinterkeuser S., Steinhauser C., AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus, Mol. Cell. Neurosci., 2002, 19, 447–458 http://dx.doi.org/10.1006/mcne.2001.1080CrossrefGoogle Scholar

  • [101] D’Ambrosio R., Maris D.O., Grady M.S., Winn H.R., Janigro D., Impaired K(+) homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia, Neurosci., 1999, 19, 8152–8162 Google Scholar

  • [102] Capendeguy O., Horisberger J.D., Functional effects of Na+,K+-ATPase gene mutations linked to familial hemiplegic migraine, Neuromolecular. Med., 2004, 6, 105–116 http://dx.doi.org/10.1385/NMM:6:2-3:105CrossrefGoogle Scholar

  • [103] Sicca F., Imbrici P., D’Adamo M.C., Moro F., Bonatti F., Brovedani P., et al., Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1, Neurobiol. Dis., 2011, 43, 239–247 http://dx.doi.org/10.1016/j.nbd.2011.03.016CrossrefGoogle Scholar

  • [104] Nico B., Ribatti D., Role of aquaporins in cell migration and edema formation in human brain tumors, Exp. Cell. Res., 2011, 317, 2391–2396 http://dx.doi.org/10.1016/j.yexcr.2011.07.006CrossrefGoogle Scholar

  • [105] Benga O., Huber V.J., Brain water channel proteins in health and disease. Mol. Aspects Med., 2012, 33, 562–578 http://dx.doi.org/10.1016/j.mam.2012.03.008CrossrefGoogle Scholar

  • [106] Liu J.P., Tang Y., Zhou S., Toh B.H., McLean C., Li H., Cholesterol involvement in the pathogenesis of neurodegenerative diseases, Mol. Cell. Neurosci., 2010, 43, 33–42 http://dx.doi.org/10.1016/j.mcn.2009.07.013CrossrefGoogle Scholar

  • [107] Chen G., Li H.M., Chen Y.R., Gu X.S., Duan S., Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C, Glia, 2007, 55, 1509–1518 http://dx.doi.org/10.1002/glia.20563CrossrefGoogle Scholar

  • [108] Kovács R., Heinemann U., Steinhäuser C., Mechanisms underlying blood-brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia, Epilepsia, 2012, 6, 53–59 http://dx.doi.org/10.1111/j.1528-1167.2012.03703.xCrossrefGoogle Scholar

  • [109] Verkhratsky A., Parpura V., Recent advances in (patho)physiology of astroglia, Acta Pharmacol. Sin., 2010, 31, 1044–1054 http://dx.doi.org/10.1038/aps.2010.108CrossrefGoogle Scholar

  • [110] Arundine M., Tymianski M., Molecular mechanisms of calciumdependent neurodegeneration in excitotoxicity, Cell Calcium, 2003, 34, 325–337 http://dx.doi.org/10.1016/S0143-4160(03)00141-6CrossrefGoogle Scholar

  • [111] Mirza B., Hadberg H., Thomsen P., Moos T., The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease, Neuroscience, 2000, 95, 425–432 http://dx.doi.org/10.1016/S0306-4522(99)00455-8CrossrefGoogle Scholar

  • [112] Zador Z., Stiver S., Wang V., Manley G.T., Role of aquaporin-4 in cerebral edema and stroke, Handb. Exp. Pharmacol., 2009, 190, 159–170 http://dx.doi.org/10.1007/978-3-540-79885-9_7CrossrefGoogle Scholar

  • [113] Sofroniew M.V., Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 2009, 32, 638–647 http://dx.doi.org/10.1016/j.tins.2009.08.002CrossrefGoogle Scholar

  • [114] Eddleston M., Mucke L., Molecular profile of reactive astrocytesimplications for their role in neurological disease, Neuroscience, 1993, 54, 15–36 http://dx.doi.org/10.1016/0306-4522(93)90380-XCrossrefGoogle Scholar

  • [115] Argaw A.T., Asp L., Zhang J., Navrazhina K., Pham T., Mariani J.N., et al., Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease, J. Clin. Invest., 2012, 122, 2452–2468 http://dx.doi.org/10.1172/JCI60842CrossrefGoogle Scholar

  • [116] Colombo E., Cordiglieri C., Melli G., Newcombe J., Krumbholz M., Parada L.F., et al., Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration, J. Exp. Med., 2012, 209, 521–535 http://dx.doi.org/10.1084/jem.20110698CrossrefGoogle Scholar

  • [117] Rossi D., Volterra A., Astrocytic dysfunction: insights on the role in neurodegeneration, Brain Res. Bull., 2009, 80, 224–232 http://dx.doi.org/10.1016/j.brainresbull.2009.07.012CrossrefGoogle Scholar

  • [118] Hinson S.R., McKeon A., Lennon V.A., Neurological autoimmunity targeting aquaporin-4, Neuroscience, 2010, 168, 1009–1018 http://dx.doi.org/10.1016/j.neuroscience.2009.08.032CrossrefGoogle Scholar

  • [119] Jarius S., Aboul-Enein F., Waters P., Kuenz B., Hauser A., Berger T., et al., Antibody to aquaporin-4 in the long-term course of neuromyelitis optica, Brain, 2008, 131, 3072–3080 http://dx.doi.org/10.1093/brain/awn240CrossrefGoogle Scholar

  • [120] Ratelade J., Verkman A.S., Neuromyelitis optica: aquaporin-4 based pathogenesis mechanisms and new therapies, Int. J. Biochem. Cell. Biol., 2012, 44, 1519–1530 http://dx.doi.org/10.1016/j.biocel.2012.06.013CrossrefGoogle Scholar

  • [121] Haj-Yasein N.N., Vindedal G.F., Eilert-Olsen M., Gundersen G.A., Skare Ø., Laake P., et al., Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet, Proc. Natl. Acad. Sci. USA, 2011, 108, 17815–17820 http://dx.doi.org/10.1073/pnas.1110655108CrossrefGoogle Scholar

  • [122] Masaki K., Suzuki S.O., Matsushita T., Yonekawa T., Matsuoka T., Isobe N., et al., Extensive loss of connexins in Baló’s disease: evidence for an auto-antibody-independent astrocytopathy via impaired astrocyte-oligodendrocyte/myelin interaction, Acta Neuropathol., 2012, 123, 887–900 http://dx.doi.org/10.1007/s00401-012-0972-xCrossrefGoogle Scholar

  • [123] Matsuoka T., Suzuki S.O., Iwaki T., Tabira T., Ordinario A.T., Kira J., Aquaporin-4 astrocytopathy in Baló’s disease, Acta Neuropathol., 2010, 120, 651–660 http://dx.doi.org/10.1007/s00401-010-0733-7CrossrefGoogle Scholar

  • [124] Hazell A.S., Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy, Neurochem. Int., 2009, 55, 129–135 http://dx.doi.org/10.1016/j.neuint.2009.02.020CrossrefGoogle Scholar

  • [125] Hazell A.S., Rao K.V., Danbolt N.C., Pow D.V., Butterworth R.F., Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy, J. Neurochem., 2001, 78, 560–568 http://dx.doi.org/10.1046/j.1471-4159.2001.00436.xCrossrefGoogle Scholar

  • [126] Hazell A.S., Sheedy D., Oanea R., Aghourian M., Sun S., Jung J.Y., et al., Loss of astrocytic glutamate transporters in Wernicke encephalopathy, Glia, 2010, 58, 148–156 http://dx.doi.org/10.1002/glia.20908CrossrefGoogle Scholar

  • [127] Hilgier W., Olson J.E., Brain ion and amino acid contents during edema development in hepatic encephalopathy, J. Neurochem., 1994, 62, 197–204 http://dx.doi.org/10.1046/j.1471-4159.1994.62010197.xCrossrefGoogle Scholar

  • [128] Schliess F., Görg B., Häussinger D., Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm, Biol. Chem., 2006, 387, 1363–1370 http://dx.doi.org/10.1515/BC.2006.171CrossrefGoogle Scholar

  • [129] Butterworth R.F., Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy, Neurochem. Int., 2010, 57, 383–388 http://dx.doi.org/10.1016/j.neuint.2010.03.012CrossrefGoogle Scholar

  • [130] Brenner M., Johnson A.B., Boespflug-Tanguy O., Rodriguez D., Goldman J.E., Messing A., Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease, Nat. Genet., 2001, 27, 117–120 http://dx.doi.org/10.1038/87020CrossrefGoogle Scholar

  • [131] Li R., Messing A., Goldman J.E., Brenner M., GFAP mutations in Alexander disease, Int. J. Dev. Neurosci., 2002, 20, 259–268 http://dx.doi.org/10.1016/S0736-5748(02)00019-9CrossrefGoogle Scholar

  • [132] Kohlschütter A., Eichler F., Childhood leukodystrophies: a clinical perspective, Expert Rev. Neurother., 2011, 11, 1485–1496 http://dx.doi.org/10.1586/ern.11.135CrossrefGoogle Scholar

  • [133] Kohlschütter A., Bley A., Brockmann K., Gärtner J., Krägeloh-Mann I., Rolfs A., et al., Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults, Brain Dev., 2010, 32, 82–89 http://dx.doi.org/10.1016/j.braindev.2009.03.014CrossrefGoogle Scholar

  • [134] Di Rocco M., Biancheri R., Rossi A., Filocamo M., Tortori-Donati P., Genetic disorders affecting white matter in the pediatric age, Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2004, 129B, 85–93 http://dx.doi.org/10.1002/ajmg.b.30029CrossrefGoogle Scholar

  • [135] Boespflug-Tanguy O., Labauge P., Fogli A., Vaurs-Barriere C., Genes involved in leukodystrophies: a glance at glial functions, Curr. Neurol. Neurosci. Rep., 2008, 8, 217–229 http://dx.doi.org/10.1007/s11910-008-0034-xCrossrefGoogle Scholar

  • [136] Huyghe A., Horzinski L., Hénaut A., Gaillard M., Bertini E., Schiffmann R., et al., Developmental splicing deregulation in leukodystrophies related to EIF2B mutations, PLoS One, 2012, 7, e38264 http://dx.doi.org/10.1371/journal.pone.0038264CrossrefGoogle Scholar

  • [137] Messing A., Brenner M., Feany M.B., Nedergaard M., Goldman J.E., Alexander disease, J. Neurosci., 2012, 32, 5017–5023 http://dx.doi.org/10.1523/JNEUROSCI.5384-11.2012CrossrefGoogle Scholar

  • [138] Bugiani M., Boor I., Powers J.M., Scheper G.C., van der Knaap M.S., Leukoencephalopathy with vanishing white matter: a review, J. Neuropathol. Exp. Neurol., 2010, 69, 987–996 http://dx.doi.org/10.1097/NEN.0b013e3181f2eafaCrossrefGoogle Scholar

  • [139] van der Knaap M.S., Scheper G.C., Megalencephalic Leukoencephalopathy with Subcortical Cysts, In: Pagon R.A., Bird T.D., Dolan C.R., Stephens K., Adam M.P. (Eds.) GeneReviews? [Internet], Seattle (WA), University of Washington, Seattle; 1993–2003 Aug 11 [updated 2011 Nov 03] Google Scholar

  • [140] Messing A., Goldman J.E., Alexander Disease, Elsevier, Amsterdam, 2004 Google Scholar

  • [141] Yoshida T., Nakagawa, M., Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation, Neuropathology, 2012, 32, 440–446 http://dx.doi.org/10.1111/j.1440-1789.2011.01268.xCrossrefGoogle Scholar

  • [142] Salvi F., Aoki Y., Della Nave R., Vella A., Pastorelli F., Scaglione C., et al., Adult Alexander’s disease without leukoencephalopathy, Ann. Neurol., 2005, 58, 813–814 http://dx.doi.org/10.1002/ana.20634CrossrefGoogle Scholar

  • [143] Barkovich A.J., Messing A., Alexander disease: not just a leukodystrophy anymore, Neurology, 2006, 66, 468–469 http://dx.doi.org/10.1212/01.wnl.0000200905.43191.4dCrossrefGoogle Scholar

  • [144] van der Knaap M.S., Ramesh V., Schiffmann R., Blaser S., Kyllerman M., Gholkar A., et al., Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord, Neurology, 2006, 66, 494–498 http://dx.doi.org/10.1212/01.wnl.0000198770.80743.37CrossrefGoogle Scholar

  • [145] Tanaka K.F., Takebayashi H., Yamazaki Y., Ono K., Naruse M., Iwasato T., et al., The murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance, Glia, 2007, 55, 617–631 http://dx.doi.org/10.1002/glia.20486CrossrefGoogle Scholar

  • [146] van der Voorn J.P., Pouwels P.J.W., Salomons G.S., Barkhof F., van der Knaap M., Unraveling pathology in juvenile Alexander disease: serial quantitative MR imaging and spectroscopy of white matter, Neuroradiology, 2009, 51, 669–675 http://dx.doi.org/10.1007/s00234-009-0540-9CrossrefGoogle Scholar

  • [147] Iwaki T., Kume-Iwaki A., Liem R.K., Goldman J.E., Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain, Cell, 1989, 57, 71–78 http://dx.doi.org/10.1016/0092-8674(89)90173-6CrossrefGoogle Scholar

  • [148] Der Perng M., Su M., Wen S.F., Li R., Gibbon T., Prescott A.R., et al., The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27, Am J. Hum. Genet., 2006, 79, 197–213 http://dx.doi.org/10.1086/504411CrossrefGoogle Scholar

  • [149] Messing A., Head M.W., Galles K., Galbreath E.J., Goldman J.E., Brenner M., Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice, Am. J. Path., 1998, 152, 391–398 Google Scholar

  • [150] Hagemann T.L., Gaeta S.A., Smith M.A., Johnson D.A., Johnson J.A., Messing A., Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction, Hum. Mol. Genet., 2005, 14, 2443–2458 http://dx.doi.org/10.1093/hmg/ddi248CrossrefGoogle Scholar

  • [151] Tang G., Xu Z., Goldman J.E., Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease, J. Biol. Chem., 2006, 281, 38634–38643 http://dx.doi.org/10.1074/jbc.M604942200CrossrefGoogle Scholar

  • [152] Tang G., Perng M.D., Wilk S., Quinlan R., Goldman J.E., Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition, J. Biol. Chem., 2010, 285, 10527–10537 http://dx.doi.org/10.1074/jbc.M109.067975CrossrefGoogle Scholar

  • [153] Mignot C., Boespflug-Tanguy O., Gelot A., Dautigny A., Pham-Dinh D., Rodriguez D., Alexander disease: putative mechanisms of an astrocytic encephalopathy, Cell. Mol. Life Sci., 2004, 61, 369–385 http://dx.doi.org/10.1007/s00018-003-3143-3CrossrefGoogle Scholar

  • [154] Hagemann T.L., Connor J.X., Messing A., Alexander diseaseassociated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response, J. Neurosci., 2006, 26, 11162–11173 http://dx.doi.org/10.1523/JNEUROSCI.3260-06.2006CrossrefGoogle Scholar

  • [155] Hagemann T.L., Boelens W.C., Wawrousek E.F., Messing A., Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease, Hum. Mol. Genet., 2009, 18, 1190–1199 http://dx.doi.org/10.1093/hmg/ddp013CrossrefGoogle Scholar

  • [156] Tian R., Wu X., Hagemann T.L., Sosunov A.A., Messing A., McKhann G.M., et al., Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes, J. Neuropathol. Exp. Neurol., 2010, 69, 335–345 http://dx.doi.org/10.1097/NEN.0b013e3181d3cb52CrossrefGoogle Scholar

  • [157] Mignot C., Delarasse C., Escaich S., Della Gaspera B., Noé E., Colucci-Guyon E., et al., Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease, Exp. Cell. Res., 2007, 313, 2766–2779 http://dx.doi.org/10.1016/j.yexcr.2007.04.035CrossrefGoogle Scholar

  • [158] Tang G., Yue Z., Talloczy Z., Goldman J.E., Adaptive autophagy in Alexander disease-affected astrocytes, Autophagy, 2008, 4, 701–713 CrossrefGoogle Scholar

  • [159] Cho W., Messing A., Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice, Exp. Cell. Res., 2009, 315, 1260–1272 http://dx.doi.org/10.1016/j.yexcr.2008.12.012CrossrefGoogle Scholar

  • [160] Chen B., Moreland J., Zhang J., Human brain functional MRI and DTI visualization with virtual reality, Quant. Imaging Med. Surg., 2011, 1, 11–16 Google Scholar

  • [161] van der Knaap M.S., Barth P.G., Stroink H., Van Nieuwenhuizen O., Arts W.F., Hoogenraad F., et al., Leukoncephalopathy with swelling and a discrepantly mild clinical course in eight children, Ann. Neurol., 1995, 7, 324–334 http://dx.doi.org/10.1002/ana.410370308CrossrefGoogle Scholar

  • [162] Singhal B.S., Gorospe J.R., Naidu S., Megalencephalic leukoencephalopathy with subcortical cysts, J. Child Neurol., 2003, 18, 646–652 http://dx.doi.org/10.1177/08830738030180091201CrossrefGoogle Scholar

  • [163] Topku M., Saatci I., Topcuoglu M.A., Kose G., Kunak B., Megalencephaly and leukodystrophy with mild clinical course: a report on 12 new cases, Brain Dev., 1998, 20, 142–153 http://dx.doi.org/10.1016/S0387-7604(98)00002-3CrossrefGoogle Scholar

  • [164] Goutières F., Boulloche J., Bourgeois M., Aicardi J., Leukoencephalopathy, megalencephaly, and mild clinical course. A recently individualized familial leukodystrophy. Report on five new cases, J. Child Neurol., 1996, 11, 439–444 http://dx.doi.org/10.1177/088307389601100604CrossrefGoogle Scholar

  • [165] Ben-Zeev B., Gross V., Kushnir T., Shalev R., Hoffman C., Shinar Y., et al., Vacuolating megalencephalic leukoencephalopathy in 12 Israeli patients, J. Child. Neurol., 2001, 16, 93–99 Google Scholar

  • [166] Riel-Romero R.M., Smith C.D., Pettigrew A.L., Megalencephalic leukoencephalopathy with subcortical cysts in two siblings owing to two novel mutations: case reports and review of the literature, J. Child. Neurol., 2005, 20, 230–234 Google Scholar

  • [167] Bugiani M., Moroni I., Bizzi A., Nardocci N., Bettecken T., Gärtner J., et al., Consciousness disturbances in megalencephalic leukoencephalopathy with subcortical cysts, Neuropediatrics, 2003, 34, 211–214 http://dx.doi.org/10.1055/s-2003-42209CrossrefGoogle Scholar

  • [168] Leegwater P.A., Yuan B.Q., Van Der Steen J., Mulders J., Konst A.A., Boor P.K., et al., Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts, Am. J. Hum. Genet., 2001, 68, 831–838 http://dx.doi.org/10.1086/319519CrossrefGoogle Scholar

  • [169] Pascual-Castroviejo I., Viaño J., Pascual-Pascual S.I., Quiñones D., Congenital and evolving vascular disorders associated with cutaneous hemangiomas: case report, Neuropediatrics, 2009, 40, 148–151 http://dx.doi.org/10.1055/s-0029-1239507CrossrefGoogle Scholar

  • [170] Duarri A., de Heredia M.L., Capdevila-Nortes X., Ridder M.C., Montolio M., Lopez-Hernandez T., et al., Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model, Neurobiol. Dis., 2011, 43, 228–238 http://dx.doi.org/10.1016/j.nbd.2011.03.015CrossrefGoogle Scholar

  • [171] Leegwater P.A., Boor P.K., Yuan B.Q., van der Steen J., Visser A., Konst A.A., et al., Identification of novel mutations in MLC1 responsible for megalencephalic leukoencephalopathy with subcortical cysts, Hum. Genet., 2002, 110, 279–283 http://dx.doi.org/10.1007/s00439-002-0682-xCrossrefGoogle Scholar

  • [172] Patrono C., Di Giacinto G., Eymard-Pierre E., Santorelli F.M., Rodriguez D., De Stefano N., et al., Genetic heterogeneity of megalencephalic leukoencephalopathy and subcortical cysts, Neurology, 2003, 61, 534–537 http://dx.doi.org/10.1212/01.WNL.0000076184.21183.CACrossrefGoogle Scholar

  • [173] Boor I.P.K., de Groot K., Mejaski-Bosnjak V., Brenner C., van der Knaap M.S., Scheper G.C., et al., Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLC1, Hum. Mutat., 2006, 27, 505–512 http://dx.doi.org/10.1002/humu.20332CrossrefGoogle Scholar

  • [174] Teijido O., Casaroli-Marano R., Kharkovets T., Aguado F., Zorzano A., Palacín M., et al., Expression patterns of MLC1 protein in the central and peripheral nervous systems, Neurobiol. Dis., 2007, 26, 532–545 http://dx.doi.org/10.1016/j.nbd.2007.01.016CrossrefGoogle Scholar

  • [175] Boor P.K., de Groot K., Waisfisz Q., Kamphorst W., Oudejans C.B., Powers J.M., et al., MLC1 a novel protein in distal astroglial processes, J. Neuropathol. Exp. Neurol., 2005, 64, 412–419 Google Scholar

  • [176] Schmitt A., Gofferje V., Weber M., Meyer J., Mössner R., Lesch K.P., The brain-specific protein MLC1 implicated in megalencephalic leukoencephalopathy with subcortical cysts is expressed in glial cells in the murine brain, Glia, 2003, 44, 283–295 http://dx.doi.org/10.1002/glia.10304CrossrefGoogle Scholar

  • [177] Ambrosini E., Serafini B., Lanciotti A., Tosini F., Scialpi F., Psaila R., et al., Biochemical characterization of MLC1 protein in astrocytes and its association with the dystrophin-glycoprotein complex, Mol. Cell. Neurosci., 2008, 37, 480–493 http://dx.doi.org/10.1016/j.mcn.2007.11.003CrossrefGoogle Scholar

  • [178] López-Hernández T., Ridder M.C., Montolio M., Capdevila-Nortes X., Polder E., Sirisi S., et al., Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism, Am. J. Hum. Genet., 2011, 88, 422–432 http://dx.doi.org/10.1016/j.ajhg.2011.02.009CrossrefGoogle Scholar

  • [179] Jeworutzki E., López-Hernández T., Capdevila-Nortes X., Sirisi S., Bengtsson L., Montolio M., et al., GlialCAM, a protein defective in a leukodystrophy, serves as a CIC-2 Cl-channel auxiliary subunit, Neuron, 2012, 73, 951–961 http://dx.doi.org/10.1016/j.neuron.2011.12.039CrossrefGoogle Scholar

  • [180] Duarri A., Teijido O., López-Hernández T., Scheper G.C., Barriere H., Boor I., et al., Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects, Hum. Mol. Genet., 2008, 17, 3728–3739 http://dx.doi.org/10.1093/hmg/ddn269CrossrefGoogle Scholar

  • [181] Lanciotti A., Brignone M.S., Camerini S., Serafini B., Macchia G., Raggi C., et al., MLC1 trafficking and membrane expression in astrocytes: role of caveolin-1 and phosphorylation, Neurobiol. Dis., 2010, 37, 581–595 http://dx.doi.org/10.1016/j.nbd.2009.11.008CrossrefGoogle Scholar

  • [182] Brignone M.S., Lanciotti A., Macioce P., Macchia G., Gaetani M., Aloisi F., et al., The beta1 subunit of the Na, K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis, Hum. Mol. Genet., 2011, 20, 90–103 http://dx.doi.org/10.1093/hmg/ddq435CrossrefGoogle Scholar

  • [183] Lanciotti A., Brignone M.S., Molinari P., Visentin S., De Nuccio C., Macchia G., et al., Megalencephalic leukoencephalopathy with subcortical cysts protein 1 functionally cooperates with the TRPV4 cation channel to activate the response of astrocytes to osmotic stress: dysregulation by pathological mutations, Hum. Mol. Genet., 2012, 21, 2166–2180 http://dx.doi.org/10.1093/hmg/dds032CrossrefGoogle Scholar

  • [184] Benfenati V., Caprini M., Dovizio M., Mylonakou M.N., Ferroni S., Ottersen O.P., et al., An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes, Proc. Natl. Acad. Sci. USA, 2011, 108, 2563–2568 http://dx.doi.org/10.1073/pnas.1012867108CrossrefGoogle Scholar

  • [185] Benfenati V., Amiry-Moghaddam M., Caprini M., Mylonakou M.N., Rapisarda C., Ottersen O.P., et al., Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes, Neuroscience, 2007, 148, 876–892 http://dx.doi.org/10.1016/j.neuroscience.2007.06.039CrossrefGoogle Scholar

  • [186] Bugiani M., Boor I., Powers J.M., Scheper G.C., van der Knaap M.S., Leukoencephalopathy with vanishing white matter: a review, J. Neuropathol. Exp. Neurol., 2010, 69, 987–996 http://dx.doi.org/10.1097/NEN.0b013e3181f2eafaCrossrefGoogle Scholar

  • [187] van der Knaap M.S., Leegwater P.A., Könst A.A., Visser A., Naidu S., Oudejans C.B., et al., Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter, Ann. Neurol., 2002, 51, 264–270 http://dx.doi.org/10.1002/ana.10112CrossrefGoogle Scholar

  • [188] Fogli A., Schiffmann R., Hugendubler L., Combes P., Bertini E., Rodriguez D., et al., Decreased guanine nucleotide exchange factor activity in eIF2B-mutated patients, Eur. J. Hum. Genet., 2004, 12, 561–566 http://dx.doi.org/10.1038/sj.ejhg.5201189CrossrefGoogle Scholar

  • [189] van der Knaap M.S., Kamphorst W., Barth P.G., Kraaijeveld C.L., Gut E., Valk J., Phenotypic variation in leukoencephalopathy with vanishing white matter, Neurology, 1998, 51, 540–547 http://dx.doi.org/10.1212/WNL.51.2.540CrossrefGoogle Scholar

  • [190] Dietrich J., Lacagnina M., Gass D., Richfield E., Mayer-Pröschel M., Noble M., et al., EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy, Nat. Med., 2005, 11, 277–283 http://dx.doi.org/10.1038/nm1195CrossrefGoogle Scholar

  • [191] Wong K., Armstrong R.C., Gyure K.A., Morrison A.L., Rodriguez D., Matalon R., et al., Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome, Acta Neuropathol., 2000, 100, 635–646 http://dx.doi.org/10.1007/s004010000234CrossrefGoogle Scholar

  • [192] Rodriguez D., Gelot A., della Gaspera B., Robain O., Ponsot G., Sarlieve L.L., et al., Increased density of oligodendrocytes in childhood ataxia with diffuse central hypomyelination (CACH) syndrome: neuropathological and biochemical study of two cases, Acta Neuropathol., 1999, 97, 469–480 http://dx.doi.org/10.1007/s004010051016CrossrefGoogle Scholar

  • [193] Francalanci P., Eymard-Pierre E., Dionisi-Vici C., Boldrini R., Piemonte F., Virgili R., et al., Fatal infantile leukodystrophy: a severe variant of CACH/VWM syndrome, allelic to chromosome 3q27, Neurology, 2001,, 265–270 http://dx.doi.org/10.1212/WNL.57.2.265CrossrefGoogle Scholar

  • [194] Bugiani M., Boor I., van Kollenburg B., Postma N., Polder E., van Berkel C., et al., Defective glial maturation in vanishing white matter disease, J. Neuropathol. Exp. Neurol., 2011, 70, 69–82 http://dx.doi.org/10.1097/NEN.0b013e318203ae74CrossrefGoogle Scholar

  • [195] Geva M., Cabilly Y., Assaf Y., Mindroul N., Marom L., Raini G., et al., A mouse model for eukaryotic translation initiation factor 2B-leucodystrophy reveals abnormal development of brain white matter, Brain, 2010, 133, 2448–2461 http://dx.doi.org/10.1093/brain/awq180CrossrefGoogle Scholar

  • [196] Kantor L., Pinchasi D., Mintz M., Hathout Y., Vanderver A., Elroy-Stein O., A point mutation in translation initiation factor 2B leads to a continuous hyper stress state in oligodendroglial-derived cells, PLoS One, 2008, 3, e3783 http://dx.doi.org/10.1371/journal.pone.0003783CrossrefGoogle Scholar

  • [197] van der Voorn J.P., van Kollenburg B., Bertrand G., Van Haren K., Scheper G.C., Powers J.M., et al., The unfolded protein response in vanishing white matter disease, J. Neuropathol. Exp. Neurol., 2005, 64, 770–775 http://dx.doi.org/10.1097/01.jnen.0000178446.41595.3aCrossrefGoogle Scholar

  • [198] Huyghe A., Horzinski L., Hénaut A., Gaillard M., Bertini E., Schiffmann R., et al., Developmental splicing deregulation in leukodystrophies related to EIF2B mutations, PLoS One, 2012, 7, e38264 http://dx.doi.org/10.1371/journal.pone.0038264CrossrefGoogle Scholar

  • [199] Bugiani M., Postma N., Polder E., Dieleman N., Scheffer P.G., Sim F.J., et al., Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease, Brain, 2013, 136, 209–222 CrossrefGoogle Scholar

  • [200] Sloane J.A., Batt C., Ma Y., Harris Z.M., Trapp B., Vartanian T., Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2, Proc. Natl. Acad. Sci. USA, 2010, 107, 11555–11560 http://dx.doi.org/10.1073/pnas.1006496107CrossrefGoogle Scholar

  • [201] McAllister T.W., Neurobiological consequences of traumatic brain injury, Dialogues Clin. Neurosci., 2011, 13, 287–300 Google Scholar

  • [202] Biddle C., The neurobiology of the human febrile response, AANA J., 2006, 74, 145–50 Google Scholar

  • [203] Combes V., Guillemin G.J., Chan-Ling T., Hunt N.H., Grau G.E., The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes, Trends Parasitol., 2012, 28, 311–319 http://dx.doi.org/10.1016/j.pt.2012.05.008CrossrefGoogle Scholar

  • [204] Molofsky A.V., Krencik R., Ullian E.M., Tsai H.H., Deneen B., Richardson W.D., et al., Astrocytes and disease: a neurodevelopmental perspective, Genes Dev., 2012, 26, 891–907 http://dx.doi.org/10.1101/gad.188326.112CrossrefGoogle Scholar

  • [205] Gibbs M.E., Bowser D.N., Hutchinson D.S., Loiacono R.E., Summers R.J., Memory processing in the avian hippocampus involves interactions between beta-adrenoceptors, glutamate receptors, and metabolism, Neuropsychopharmacology, 2008, 33, 2831–2846 http://dx.doi.org/10.1038/npp.2008.5CrossrefGoogle Scholar

  • [206] Halassa M.M., Florian C., Fellin T., Munoz J.R., Lee S.Y., Abel T., et al., Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss, Neuron, 2009, 61, 213–219 http://dx.doi.org/10.1016/j.neuron.2008.11.024CrossrefGoogle Scholar

  • [207] Gourine A.V., Kasymov V., Marina N., Tang F., Figueiredo M.F., Lane S., et al., Astrocytes control breathing through pH-dependent release of ATP, Science, 2010, 329, 571–575 http://dx.doi.org/10.1126/science.1190721CrossrefGoogle Scholar

  • [208] Christensen R.K., Petersen A.V., Perrier J.F., How do glial cells contribute to motor control, Curr. Pharm. Des., 2013, [Epub ahead of print]_doi: CPD-EPUB-20130121-5 Google Scholar

  • [209] Verkhratsky A., Sofroniew M.V., Messing A., de Lanerolle N.C., Rempe D., Rodríguez J.J., et al., Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro., 2012, 4, e00082 http://dx.doi.org/10.1042/AN20120010CrossrefGoogle Scholar

  • [210] Oberheim N.A., Goldman S.A., Nedergaard M., Heterogeneity of astrocytic form and function, Methods Mol. Biol., 2012, 814, 23–45 http://dx.doi.org/10.1007/978-1-61779-452-0_3CrossrefGoogle Scholar

  • [211] Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353 http://dx.doi.org/10.1016/j.nurt.2010.07.006CrossrefGoogle Scholar

  • [212] Jeong S.R., Kwon M.J., Lee H.G., Joe E.H., Lee J.H., Kim S.S., et al., Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury, Exp. Neurol., 2012, 233, 312–222 http://dx.doi.org/10.1016/j.expneurol.2011.10.021CrossrefGoogle Scholar

  • [213] Fontana A.C., de Oliveira Beleboni R., Wojewodzic M.W., Ferreira Dos Santos W., Coutinho-Netto J., Grutle N.J., et al., Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom, Mol. Pharmacol., 2007, 72, 1228–1237 http://dx.doi.org/10.1124/mol.107.037127Google Scholar

  • [214] Escartin C., Bonvento G., Targeted activation of astrocytes: a potential neuroprotective strategy, Mol. Neurobiol., 2008, 38, 231–241 http://dx.doi.org/10.1007/s12035-008-8043-yCrossrefGoogle Scholar

  • [215] Gupta K., Patani R., Baxter P., Serio A., Story D., Tsujita T., et al., Human embryonic stem cell derived astrocytes mediate non-cellautonomous neuroprotection through endogenous and druginduced mechanisms, Cell Death Differ., 2012, 19, 779–787 http://dx.doi.org/10.1038/cdd.2011.154CrossrefGoogle Scholar

  • [216] Krencik R., Zhang S.C., Directed differentiation of functional astroglial subtypes from human pluripotent stem cells, Nat. Protoc., 2011, 6, 1710–1717 http://dx.doi.org/10.1038/nprot.2011.405CrossrefGoogle Scholar

  • [217] Goldman S.A., Nedergaard M., Windrem M.S., Glial progenitor cellbased treatment and modeling of neurological disease, Science, 2012, 338, 491–495 http://dx.doi.org/10.1126/science.1218071CrossrefGoogle Scholar

  • [218] Juopperi T.A., Kim W.R., Chiang C.H., Yu H., Margolis R.L., Ross C.A., et al., Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells, Mol. Brain, 2012, 5, 17 http://dx.doi.org/10.1186/1756-6606-5-17CrossrefGoogle Scholar

  • [219] Noble M., Davies J.E., Mayer-Pröschel M., Pröschel C., Davies S.J., Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury, Neurotherapeutics, 2011, 8, 677–693 http://dx.doi.org/10.1007/s13311-011-0071-zCrossrefGoogle Scholar

  • [220] Davies S.J., Shih C.H., Noble M., Mayer-Proschel M., Davies J.E., Proschel C., Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury, PLoS One, 2011, 6, e17328 http://dx.doi.org/10.1371/journal.pone.0017328CrossrefGoogle Scholar

  • [221] Lee H.J., Lim I.J., Park S.W., Ko Y.B., Kim S.U., Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in mouse with ibotenic acid-induced cognitive dysfunction, Cell Transplant., 2012, 21, 2487–2496 http://dx.doi.org/10.3727/096368912X638964CrossrefGoogle Scholar

  • [222] Jin Y., Neuhuber B., Singh A., Bouyer J., Lepore A., Bonner J., et al., Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury, J. Neurotrauma, 2011, 28, 579–594 http://dx.doi.org/10.1089/neu.2010.1626CrossrefGoogle Scholar

  • [223] Van Dycke A., Raedt R., Verstraete A., Theofilas P., Wadman W., Vonck K., et al., Astrocytes derived from fetal neural progenitor cells as a novel source for therapeutic adenosine delivery, Seizure, 2010, 19, 390–396 http://dx.doi.org/10.1016/j.seizure.2010.05.010CrossrefGoogle Scholar

  • [224] Hayashi K., Hashimoto M., Koda M., Naito A.T., Murata A., Okawa A., et al., Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model, J. Neurosurg. Spine, 2011, 15, 582–593 http://dx.doi.org/10.3171/2011.7.SPINE10775CrossrefGoogle Scholar

  • [225] Lepore A.C., O’Donnell J., Kim A.S., Williams T., Tuteja A., Rao M.S., et al., Human glial-restricted progenitor transplantation into cervical spinal cord of the SOD1 mouse model of ALS, PLoS One, 2011, 6, e25968 http://dx.doi.org/10.1371/journal.pone.0025968Google Scholar

  • [226] Corti S., Nizzardo M., Simone C., Falcone M., Donadoni C., Salani S., et al., Direct reprogramming of human astrocytes into neural stem cells and neurons, Exp. Cell. Res., 2012, 318, 1528–1541 http://dx.doi.org/10.1016/j.yexcr.2012.02.040CrossrefGoogle Scholar

About the article

Published Online: 2013-06-09

Published in Print: 2013-06-01

Citation Information: Translational Neuroscience, Volume 4, Issue 2, Pages 144–164, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0118-1.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dipankar J. Dutta, Dong Ho Woo, Philip R. Lee, Sinisa Pajevic, Olena Bukalo, William C. Huffman, Hiroaki Wake, Peter J. Basser, Shahriar SheikhBahaei, Vanja Lazarevic, Jeffrey C. Smith, and R. Douglas Fields
Proceedings of the National Academy of Sciences, 2018, Page 201811013
Robert Zorec, Tatjana Avšič Županc, and Alexei Verkhratsky
Neuroscience Letters, 2018
Li Li, E Tian, Xianwei Chen, Jianfei Chao, Jeremy Klein, Qiuhao Qu, Guihua Sun, Guoqiang Sun, Yanzhou Huang, Charles D. Warden, Peng Ye, Lizhao Feng, Xinqiang Li, Qi Cui, Abdullah Sultan, Panagiotis Douvaras, Valentina Fossati, Neville E. Sanjana, Arthur D. Riggs, and Yanhong Shi
Cell Stem Cell, 2018, Volume 23, Number 2, Page 239
Prisca S. Leferink, Nicole Breeuwsma, Marianna Bugiani, Marjo S. van der Knaap, and Vivi M. Heine
Glia, 2017
Alexandre Umpierrez Amaral, Bianca Seminotti, Janaína Camacho da Silva, Francine Hehn de Oliveira, Rafael Teixeira Ribeiro, Carmen Regla Vargas, Guilhian Leipnitz, Abel Santamaría, Diogo Onofre Souza, and Moacir Wajner
Neurotoxicity Research, 2017
Alexei Verkhratsky, Robert Zorec, and Vladimir Parpura
Brain Pathology, 2017, Volume 27, Number 5, Page 629
Abinaya Chandrasekaran, Hasan X. Avci, Marcel Leist, Julianna Kobolák, and Andras Dinnyés
Frontiers in Cellular Neuroscience, 2016, Volume 10
RajendraSingh Jain, PankajKumar Gupta, Sunil Kumar, and Rakesh Agrawal
Annals of Indian Academy of Neurology, 2016, Volume 19, Number 2, Page 242
Francesca Boscia, Gulnaz Begum, Giuseppe Pignataro, Rossana Sirabella, Ornella Cuomo, Antonella Casamassa, Dandan Sun, and Lucio Annunziato
Glia, 2016, Volume 64, Number 10, Page 1677

Comments (0)

Please log in or register to comment.
Log in