Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Anatomical location of transcallosal sensorimotor fibers in the human brain: Diffusion tensor tractography study

Jung Seo
  • Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Gyeongsan, South Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sung Jang
  • Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Gyeongsan, South Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-13 | DOI: https://doi.org/10.2478/s13380-013-0129-y


Many diffusion tensor tractography (DTT) studies have reported on the topography of transcallosal fibers (TCF). However, little detailed anatomical information on TCF that can be easily applied for clinical purposes is known. Using probabilistic DTT, we attempted to determine the anatomical location of the TCF for motor and sensory function in the human brain. A total of 51 healthy subjects were recruited for this study. Diffusion tensor images (DTIs) were obtained at 1.5 T, and four TCF for the premotor cortex (PMC), the primary motor cortex (M1) for hand and leg, and the primary somatosensory cortex (S1) were obtained using FMRIB software. Locations of the TCF were defined as the highest probabilistic location on the midsagittal slice of the corpus callosum. We measured distances between the most anterior and posterior points of the corpus callosum. The relative mean distances of the highest probabilistic location for the precentral knob PMC (Brodmann area 6 anterior to the precentral knob), hand M1, leg M1, and precentral knob S1 (postcentral gyrus posterior to the precentral knob) TCF were 48.99%, 59.78%, 67.93%, and 73,48% from the most anterior point of the CC, respectively. According to our findings, the precentral knob PMC, hand M1, leg M1, and precentral knob S1 TCF were located at the anterior body, posterior body, posterior body, and isthmus according to Witelson’s classification, respectively.

Keywords: Corpus callosum; Diffusion tensor imaging; Transcallosal fiber; Motor function

  • [1] Jones E.G., Epilepsy and the corpus callosum, Plenum Press, New York, 1985 Google Scholar

  • [2] Wahl M., Ziemann U., The human motor corpus callosum, Rev. Neurosci., 2008, 19, 451–466 Google Scholar

  • [3] Watson R.T., Heilman K.M., Callosal apraxia, Brain, 1983, 106, 391–403 http://dx.doi.org/10.1093/brain/106.2.391CrossrefGoogle Scholar

  • [4] Bogousslavsky J., Caplan L.R., Stroke syndromes, Cambridge University Press, Cambridge, 2001 http://dx.doi.org/10.1017/CBO9780511586521CrossrefGoogle Scholar

  • [5] Bourekas E.C., Varakis K., Bruns D., Christoforidis G.A., Baujan M., Slone H.W., et al., Lesions of the corpus callosum: MR imaging and differential considerations in adults and children, AJR Am. J. Roentgenol., 2002, 179, 251–257 http://dx.doi.org/10.2214/ajr.179.1.1790251CrossrefGoogle Scholar

  • [6] Jea A., Vachhrajani S., Widjaja E., Nilsson D., Raybaud C., Shroff M., et al., Corpus callosotomy in children and the disconnection syndromes: a review, Childs Nerv. Syst., 2008, 24, 685–692 http://dx.doi.org/10.1007/s00381-008-0626-4CrossrefGoogle Scholar

  • [7] Blume W.T., Corpus callosum section for seizure control: rationale and review of experimental and clinical data, Cleve. Clin. Q., 1984, 51, 319–332 http://dx.doi.org/10.3949/ccjm.51.2.319CrossrefGoogle Scholar

  • [8] Molko N., Cohen L., Mangin J.F., Chochon F., Lehericy S., Le Bihan D., et al., Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging, J. Cogn. Neurosci., 2002, 14, 629–636 http://dx.doi.org/10.1162/08989290260045864CrossrefGoogle Scholar

  • [9] Le T.H., Mukherjee P., Henry R.G., Berman J.I., Ware M., Manley G.T., Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report, Neurosurgery, 2005, 56, 189 Google Scholar

  • [10] Lin F., Yu C., Liu Y., Li K., Lei H., Diffusion tensor group tractography of the corpus callosum in clinically isolated syndrome, AJNR Am. J. Neuroradiol., 2011, 32, 92–98 http://dx.doi.org/10.3174/ajnr.A2602CrossrefWeb of ScienceGoogle Scholar

  • [11] Chang M.C., Yeo S.S., Jang S.H., Callosal disconnection syndrome in a patient with corpus callosum hemorrhage: a diffusion tensor tractography study, Arch. Neurol., 2012, 69: 1374–1375 http://dx.doi.org/10.1001/archneurol.2012.48CrossrefWeb of ScienceGoogle Scholar

  • [12] Abe O., Masutani Y., Aoki S., Yamasue H., Yamada H., Kasai K., et al., Topography of the human corpus callosum using diffusion tensor tractography, J. Comput. Assist. Tomogr., 2004, 28, 533–539 http://dx.doi.org/10.1097/00004728-200407000-00016CrossrefGoogle Scholar

  • [13] Hofer S., Frahm J., Topography of the human corpus callosum revisited -comprehensive fiber tractography using diffusion tensor magnetic resonance imaging, Neuroimage, 2006, 32, 989–994 http://dx.doi.org/10.1016/j.neuroimage.2006.05.044CrossrefGoogle Scholar

  • [14] Zarei M., Johansen-Berg H., Smith S., Ciccarelli O., Thompson A.J., Matthews P.M., Functional anatomy of interhemispheric cortical connections in the human brain, J. Anat., 2006, 209, 311–320 http://dx.doi.org/10.1111/j.1469-7580.2006.00615.xCrossrefGoogle Scholar

  • [15] Wahl M., Lauterbach-Soon B., Hattingen E., Jung P., Singer O., Volz S., et al., Human motor corpus callosum: topography, somatotopy, and link between microstructure and function, J. Neurosci., 2007, 27, 12132–12138 http://dx.doi.org/10.1523/JNEUROSCI.2320-07.2007CrossrefWeb of ScienceGoogle Scholar

  • [16] Park H.J., Kim J.J., Lee S.K., Seok J.H., Chun J., Kim D.I., et al., Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI, Hum. Brain Mapp., 2008, 29, 503–516 http://dx.doi.org/10.1002/hbm.20314CrossrefWeb of ScienceGoogle Scholar

  • [17] Chao Y.P., Cho K.H., Yeh C.H., Chou K.H., Chen J.H., Lin C.P., Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography, Hum. Brain Mapp., 2009, 30, 3172–3187 http://dx.doi.org/10.1002/hbm.20739Web of ScienceCrossrefGoogle Scholar

  • [18] Koerte I., Heinen F., Fuchs T., Laubender R.P., Pomschar A., Stahl R., et al., Anisotropy of callosal motor fibers in combination with transcranial magnetic stimulation in the course of motor development, Invest. Radiol., 2009, 44, 279–284 http://dx.doi.org/10.1097/RLI.0b013e31819e9362Web of ScienceCrossrefGoogle Scholar

  • [19] Salvolini U., Polonara G., Mascioli G., Fabri M., Manzoni T., Functional topography of the human corpus callosum, Bull. Acad. Natl. Med., 2010, 194, 617–631; discussion 631–632 Google Scholar

  • [20] Fabri M., Polonara G., Mascioli G., Salvolini U., Manzoni T., Topographical organization of human corpus callosum: an fMRI mapping study, Brain Res., 2011, 1370, 99–111 http://dx.doi.org/10.1016/j.brainres.2010.11.039Web of ScienceCrossrefGoogle Scholar

  • [21] Gawryluk J.R., D’Arcy R.C., Mazerolle E.L., Brewer K.D., Beyea S.D., Functional mapping in the corpus callosum: a 4T fMRI study of white matter, Neuroimage, 2011, 54, 10–15 http://dx.doi.org/10.1016/j.neuroimage.2010.07.028Web of ScienceCrossrefGoogle Scholar

  • [22] Fling B.W., Benson B.L., Seidler R.D., Transcallosal sensorimotor fiber tract structure-function relationships, Hum. Brain Mapp., 2013, 34, 384–395 http://dx.doi.org/10.1002/hbm.21437CrossrefWeb of ScienceGoogle Scholar

  • [23] Behrens T.E., Johansen-Berg H., Woolrich M.W., Smith S.M., Wheeler-Kingshott C.A., Boulby P.A., et al., Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging, Nat. Neurosci., 2003, 6, 750–757 http://dx.doi.org/10.1038/nn1075CrossrefGoogle Scholar

  • [24] Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E., Johansen-Berg H., et al., Advances in functional and structural MR image analysis and implementation as FSL, Neuroimage, 2004, 23Suppl. 1, S208–219 http://dx.doi.org/10.1016/j.neuroimage.2004.07.051CrossrefGoogle Scholar

  • [25] Behrens T.E., Berg H.J., Jbabdi S., Rushworth M.F., Woolrich M.W., Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?, Neuroimage, 2007, 34, 144–155 http://dx.doi.org/10.1016/j.neuroimage.2006.09.018CrossrefWeb of ScienceGoogle Scholar

  • [26] Hong J.H., Son S.M., Jang S.H., Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study, Neuroimage, 2010, 51, 952–955 http://dx.doi.org/10.1016/j.neuroimage.2010.02.063Web of ScienceCrossrefGoogle Scholar

  • [27] Witelson S.F., Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study, Brain, 1989, 112, 799–835 http://dx.doi.org/10.1093/brain/112.3.799CrossrefGoogle Scholar

  • [28] Wiegell M.R., Larsson H.B., Wedeen V.J., Fiber crossing in human brain depicted with diffusion tensor MR imaging, Radiology, 2000, 217, 897–903 Google Scholar

  • [29] Parker G.J., Alexander D.C., Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360, 893–902 http://dx.doi.org/10.1098/rstb.2005.1639CrossrefGoogle Scholar

  • [30] Yamada K., Sakai K., Akazawa K., Yuen S., Nishimura T., MR tractography: a review of its clinical applications, Magn. Reson. Med. Sci., 2009, 8, 165–174 http://dx.doi.org/10.2463/mrms.8.165CrossrefGoogle Scholar

About the article

Published Online: 2013-09-13

Published in Print: 2013-09-01

Citation Information: Translational Neuroscience, Volume 4, Issue 3, Pages 363–367, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0129-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sung Ho Jang, Chul Hoon Chang, Young Jin Jung, and Han Do Lee
American Journal of Physical Medicine & Rehabilitation, 2017, Volume 96, Number 10, Page e177

Comments (0)

Please log in or register to comment.
Log in