Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier


IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Multisensory integration and neuroplasticity in the human cerebral cortex

Evangelos Paraskevopoulos / Sibylle Herholz
Published Online: 2013-09-13 | DOI: https://doi.org/10.2478/s13380-013-0134-1

Abstract

There is a strong interaction between multisensory processing and the neuroplasticity of the human brain. On one hand, recent research demonstrates that experience and training in various domains modifies how information from the different senses is integrated; and, on the other hand multisensory training paradigms seem to be particularly effective in driving functional and structural plasticity. Multisensory training affects early sensory processing within separate sensory domains, as well as the functional and structural connectivity between uni- and multisensory brain regions. In this review, we discuss the evidence for interactions of multisensory processes and brain plasticity and give an outlook on promising clinical applications and open questions.

Keywords: Multisensory processing; Training-related plasticity; Training; Musical training

  • [1] Ghazanfar A.A., Schroeder C.E., Is neocortex essentially multisensory?, Trends in cognitive sciences, 2006, 10, 278–285 http://dx.doi.org/10.1016/j.tics.2006.04.008CrossrefGoogle Scholar

  • [2] Driver J., Noesselt T., Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments, Neuron, 2008, 57, 11–23 http://dx.doi.org/10.1016/j.neuron.2007.12.013CrossrefGoogle Scholar

  • [3] Alais D., Newell F.N., Mamassian P., Multisensory processing in review: from physiology to behaviour, Seeing and Perceiving, 2010, 23, 3–38 http://dx.doi.org/10.1163/187847510X488603CrossrefGoogle Scholar

  • [4] Love S., Pollick F., Petrini K., Effects of experience, training and expertise on multisensory perception: investigating the link between brain and behavior, In: Esposito A. (ed.) Cognitive behavioural systems 2011, Springer, Berlin, 2012, 304–320 http://dx.doi.org/10.1007/978-3-642-34584-5_27CrossrefGoogle Scholar

  • [5] Zatorre R.J., Fields D., Johansen-Berg H., Plasticity in gray and white: neuroimaging changes in brain structure during learning, Nat. Neurosci., 2012, 15, 528–536 http://dx.doi.org/10.1038/nn.3045CrossrefGoogle Scholar

  • [6] Maguire E., Navigation-related structural change in the hippocampi of taxi drivers, Proc. Nat. Acad. Sci. USA, 2000, 97, 4398–4403 http://dx.doi.org/10.1073/pnas.070039597CrossrefGoogle Scholar

  • [7] Bengtsson S.L., Nagy Z., Skare S., Forsman L., Forrsberg H., Ullén F., Extensive piano practicing has regionally specific effects on white matter development, Nat. Neurosci., 2005, 8, 1148–1150 http://dx.doi.org/10.1038/nn1516CrossrefGoogle Scholar

  • [8] Wan C.Y., Schlaug G., Music making as a tool for promoting brain plasticity across the life span, Neuroscientist, 2010, 16, 566–577 http://dx.doi.org/10.1177/1073858410377805CrossrefGoogle Scholar

  • [9] Cappe C., Rouiller E.M., Barone P., Multisensory anatomical pathways, Hearing Res., 2009, 258, 28–36 http://dx.doi.org/10.1016/j.heares.2009.04.017CrossrefGoogle Scholar

  • [10] Wright T., Pelphrey K., Allison T., Polysensory interactions along lateral temporal regions evoked by audiovisual speech, Cereb. Cortex, 2003, 13, 1034–1043 http://dx.doi.org/10.1093/cercor/13.10.1034CrossrefGoogle Scholar

  • [11] van Atteveldt N., Formisano E., Goebel R., Blomert L., Integration of letters and speech sounds in the human brain, Neuron, 2004, 43, 271–282 http://dx.doi.org/10.1016/j.neuron.2004.06.025CrossrefGoogle Scholar

  • [12] Raij T., Uutela K., Hari R., Audiovisual integration of letters in the human brain, Neuron, 2000, 28, 617–625 http://dx.doi.org/10.1016/S0896-6273(00)00138-0CrossrefGoogle Scholar

  • [13] Besle J., Fischer C., Bidet-Caulet A., Lecaignard F., Bertrand O., Giard M.H., Visual activation and audiovisual interactions in the auditory cortex during speech perception: intracranial recordings in humans, J. Neurosci., 2008, 28, 14301–14310 http://dx.doi.org/10.1523/JNEUROSCI.2875-08.2008CrossrefGoogle Scholar

  • [14] Barraclough N.E., Xiao D., Baker C.I., Oram M.W., Perrett D.I., Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions, J. Cogn. Neurosci., 2005, 17, 377–391 http://dx.doi.org/10.1162/0898929053279586CrossrefGoogle Scholar

  • [15] Macaluso E., Driver J., Multisensory spatial interactions: a window onto functional integration in the human brain, Trends Neurosci., 2005, 28, 264–271 http://dx.doi.org/10.1016/j.tins.2005.03.008CrossrefGoogle Scholar

  • [16] Bremmer F., Schlack A., Shah N.J., Zafiris O., Kubischik M., Hoffmann K., et al., Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study stronly implies equivalencies between humans and monkeys, Neuron, 2001, 29, 287–296 http://dx.doi.org/10.1016/S0896-6273(01)00198-2CrossrefGoogle Scholar

  • [17] Makin T.R., Holmes N.P., Zohary E., Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus, J. Neurosci., 2007, 27, 731–740 http://dx.doi.org/10.1523/JNEUROSCI.3653-06.2007CrossrefGoogle Scholar

  • [18] Bien N., ten Oever S., Goebel R., Sack A.T., The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG and psychophysics study, Neuroimage, 2012, 59, 663–672 CrossrefGoogle Scholar

  • [19] Gifford G., Cohen Y., Spatial and non-spatial auditory processing in the lateral intraparietal area, Exp. Brain Res., 2005, 162, 509–512 http://dx.doi.org/10.1007/s00221-005-2220-2CrossrefGoogle Scholar

  • [20] Grunewald A., Responses to auditory stimuli in macaque lateral intraparietal area I. Effects of training, J. Neurophysiol., 1999, 82, 330–342 Google Scholar

  • [21] Gifford G., Cohen Y., Effect of a central fixation light on auditory spatial responses in area LIP, J. Neurophysiol., 2004, 91, 2929–2933 http://dx.doi.org/10.1152/jn.01117.2003CrossrefGoogle Scholar

  • [22] Beauchamp M., See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex, Curr. Opin. Neurobiol., 2005, 15, 1–9 http://dx.doi.org/10.1016/j.conb.2005.03.011CrossrefGoogle Scholar

  • [23] Fuster J.M., Bodner M., Kroger J.K., Cross-modal and cross-temporal association in neurons of frontal cortex, Nature, 2000, 405, 347–351 http://dx.doi.org/10.1038/35012613CrossrefGoogle Scholar

  • [24] Noppeney U., Ostwald D., Werner S., Perceptual decisions formed by accumulation of audiovisual evidence in prefrontal cortex, J. Neurosci., 2010, 30, 7434–7446 http://dx.doi.org/10.1523/JNEUROSCI.0455-10.2010CrossrefGoogle Scholar

  • [25] Belardinelli M.O., Sestieri C., Matteo R., Delogu F., Gratta C., Ferretti A., et al., Audio-visual crossmodal interactions in environmental perception: an fMRI investigation, Cogn. Process., 2004, 5, 167–174 CrossrefGoogle Scholar

  • [26] Paraskevopoulos E., Kuchenbuch A., Herholz S.C., Pantev C., Musical expertise induces audiovisual integration of abstract congruency rules, J. Neurosci., 2012, 32, 18196–18203 http://dx.doi.org/10.1523/JNEUROSCI.1947-12.2012CrossrefGoogle Scholar

  • [27] Sugihara T., Diltz M.D., Averbeck B.B., Romanski L.M., Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex, J. Neurosci., 2006, 26, 11138–11147 http://dx.doi.org/10.1523/JNEUROSCI.3550-06.2006CrossrefGoogle Scholar

  • [28] Romanski L.M., Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex, Cereb. Cortex, 2007, 17(Suppl. 1), i61–69 http://dx.doi.org/10.1093/cercor/bhm099CrossrefGoogle Scholar

  • [29] Stein B.E., Stanford T.R., Multisensory integration: current issues from the perspective of the single neuron, Nat. Rev. Neurosci., 2008, 9, 255–266 http://dx.doi.org/10.1038/nrn2331CrossrefGoogle Scholar

  • [30] Kayser C., Petkov C.I., Logothetis N.K., Multisensory interactions in primate auditory cortex: fMRI and electrophysiology, Hearing Res., 2009, 258, 80–88 http://dx.doi.org/10.1016/j.heares.2009.02.011CrossrefGoogle Scholar

  • [31] Pekkola J., Ojanen V., Autti T., Jääskeläinen I.P., Möttönen R., Tarkiainen A., et al., Primary auditory cortex activation by visual speech: an fMRI study at 3 T, Neuroreport, 2005, 16, 125–128 http://dx.doi.org/10.1097/00001756-200502080-00010CrossrefGoogle Scholar

  • [32] Hoefer M., Tyll S., Kanowski M., Brosch M., Schoenfeld M.A., Heinze H.J., Noesselt T., Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex, Neuroimage, 2013, 79, 371–382 http://dx.doi.org/10.1016/j.neuroimage.2013.04.119CrossrefGoogle Scholar

  • [33] Miki K., Watanabe S., Kakigi R., Interaction between auditory and visual stimulus relating to the vowel sounds in the auditory cortex in humans: a magnetoencephalographic study, Neurosci. Lett., 2004, 357, 199–202 http://dx.doi.org/10.1016/j.neulet.2003.12.082CrossrefGoogle Scholar

  • [34] Lütkenhöner B., Lammertmann C., Simões C., Hari R., Magnetoencephalographic correlates of audiotactile interaction, Neuroimage, 2002, 15, 509–522 http://dx.doi.org/10.1006/nimg.2001.0991CrossrefGoogle Scholar

  • [35] Watkins S., Shams L., Tanaka S., Haynes J.D., Rees G., Sound alters activity in human V1 in association with illusory visual perception, Neuroimage, 2006, 31, 1247–1256 http://dx.doi.org/10.1016/j.neuroimage.2006.01.016CrossrefGoogle Scholar

  • [36] Sadato N., How the blind “see” Braille: lessons from functional magnetic resonance imaging, Neuroscientist, 2005, 11, 577–582 http://dx.doi.org/10.1177/1073858405277314CrossrefGoogle Scholar

  • [37] Zhou Y.D., Fuster J.M., Somatosensory cell response to an auditory cue in a haptic memory task, Behav. Brain Res., 2004, 153, 573–578 http://dx.doi.org/10.1016/j.bbr.2003.12.024CrossrefGoogle Scholar

  • [38] Tettamanti M., Weniger D., Broca’s area: a supramodal hierarchical processor?, Cortex, 2006, 42, 491–494 http://dx.doi.org/10.1016/S0010-9452(08)70384-8CrossrefGoogle Scholar

  • [39] Eger E., Sterzer P., Russ M., Giraud A., Kleinschmidt A., A supramodal number representation in human intraparietal cortex, Neuron, 2003, 37, 719–725 http://dx.doi.org/10.1016/S0896-6273(03)00036-9CrossrefGoogle Scholar

  • [40] Roberts K., Hall D., Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory, J. Cogn. Neurosci., 2008, 20, 1063–1078 http://dx.doi.org/10.1162/jocn.2008.20074CrossrefGoogle Scholar

  • [41] Stein B.E., Meredith M.A., The merging of the senses, MIT Press, Cambridge, MA, USA, 1993 Google Scholar

  • [42] Meredith M.A., Stein B.E., Spatial factors determine the activity of multisensory neurons in cat superior colliculus, Brain Res., 1986, 365, 350–354 http://dx.doi.org/10.1016/0006-8993(86)91648-3CrossrefGoogle Scholar

  • [43] Jiang W., Wallace M.T., Jiang H., Vaughan J.W., Stein B.E., Two cortical areas mediate multisensory integration in superior colliculus neurons, J. Neurophysiol., 2001, 85, 506–522 Google Scholar

  • [44] Naghavi H.R., Eriksson J., Larsson A., Nyberg L., The claustrum/ insula region integrates conceptually related sounds and pictures, Neurosci. Lett., 2007, 422, 77–80 http://dx.doi.org/10.1016/j.neulet.2007.06.009CrossrefGoogle Scholar

  • [45] Chudler E.H., Sugiyama K., Dong W.K., Multisensory convergence and integration in the neostriatum and globus pallidus of the rat, Brain Res., 1995, 674, 33–45 http://dx.doi.org/10.1016/0006-8993(94)01427-JCrossrefGoogle Scholar

  • [46] Kuraoka K., Nakamura K., Responses of single neurons in monkey amygdala to facial and vocal emotions, J. Neurophysiol., 2007, 97, 1379–1387 http://dx.doi.org/10.1152/jn.00464.2006CrossrefGoogle Scholar

  • [47] Komura Y., Tamura R., Uwano T., Nishijo H., Ono T., Auditory thalamus integrates visual inputs into behavioral gains, Nat. Neurosci., 2005, 8, 1203–1209 http://dx.doi.org/10.1038/nn1528CrossrefGoogle Scholar

  • [48] Basura G.J., Koehler S.D., Shore S.E., Multi-sensory integration in brainstem and auditory cortex, Brain Res., 2012, 1485, 95–107 http://dx.doi.org/10.1016/j.brainres.2012.08.037CrossrefGoogle Scholar

  • [49] Musacchia G., Sams M., Nicol T., Kraus N., Seeing speech affects acoustic information processing in the human brainstem, Exp. Brain Res., 2006, 168, 1–10 http://dx.doi.org/10.1007/s00221-005-0071-5CrossrefGoogle Scholar

  • [50] Senkowski D., Schneider T.R., Foxe J.J., Engel A.K., Crossmodal binding through neural coherence: implications for multisensory processing, Trends Neurosci., 2008, 31, 401–409 http://dx.doi.org/10.1016/j.tins.2008.05.002CrossrefGoogle Scholar

  • [51] Senkowski D., Molholm S., Gomez-Ramirez M., Foxe J.J., Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study, Cereb. Cortex, 2006, 16, 1556–1565 http://dx.doi.org/10.1093/cercor/bhj091CrossrefGoogle Scholar

  • [52] Klemen J., Chambers C.D., Current perspectives and methods in studying neural mechanisms of multisensory interactions, Neurosci. Biobehav. Rev., 2012, 36, 111–133 http://dx.doi.org/10.1016/j.neubiorev.2011.04.015CrossrefGoogle Scholar

  • [53] Calvert G.A., Thesen T., Multisensory integration: methodological approaches and emerging principles in the human brain, J. Physiol., Paris, 2004, 98, 191–205 http://dx.doi.org/10.1016/j.jphysparis.2004.03.018CrossrefGoogle Scholar

  • [54] Liang M., Mouraux A., Iannetti G.D., Bypassing primary sensory cortices — a direct thalamocortical pathway for transmitting salient sensory information, Cereb. Cortex, 2012, 23, 1–11 http://dx.doi.org/10.1093/cercor/bhr363CrossrefGoogle Scholar

  • [55] Mesulam M., From sensation to cognition, Brain, 1998, 121, 1013–1052 http://dx.doi.org/10.1093/brain/121.6.1013CrossrefGoogle Scholar

  • [56] Walker P., Bremner J.G., Mason U., Spring J., Mattock K., Slater A., et al., Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences, Psychol. Sci., 2010, 21, 21–25 http://dx.doi.org/10.1177/0956797609354734CrossrefGoogle Scholar

  • [57] Brandwein A.B., Foxe J.J., Russo N.N., Altschuler T.S., Gomes H., Molholm S., The development of audiovisual multisensory integration across childhood and early adolescence: a high-density electrical mapping study, Cereb. Cortex, 2011, 21, 1042–1055 http://dx.doi.org/10.1093/cercor/bhq170CrossrefGoogle Scholar

  • [58] Bavelier D., Neville H.J., Cross-modal plasticity: where and how?, Nat. Rev. Neurosci., 2002, 3, 443–452 Google Scholar

  • [59] Röder B., Wallace M., Development and plasticity of multisensory functions, Restor. Neurol. Neurosci., 2010, 28, 141–142 Google Scholar

  • [60] McGurk H., Macdonald J., Hearing lips and seeing voices, Nature, 1976, 264, 746–748 http://dx.doi.org/10.1038/264746a0CrossrefGoogle Scholar

  • [61] Herholz S.C., Zatorre R.J., Musical training as a framework for brain plasticity: behavior, function, and structure, Neuron, 2012, 76, 486–502 http://dx.doi.org/10.1016/j.neuron.2012.10.011CrossrefGoogle Scholar

  • [62] Lappe C., Herholz S.C., Trainor L.J., Pantev C., Cortical plasticity induced by short-term unimodal and multimodal musical training, J. Neurosci., 2008, 28, 9632–9639 http://dx.doi.org/10.1523/JNEUROSCI.2254-08.2008CrossrefGoogle Scholar

  • [63] Lappe C., Trainor L.J., Herholz S.C., Pantev C., Cortical plasticity induced by short-term multimodal musical rhythm training, PloS One, 2011, 6, e21493 http://dx.doi.org/10.1371/journal.pone.0021493CrossrefGoogle Scholar

  • [64] Paraskevopoulos E., Kuchenbuch A., Herholz S.C., Pantev C., Evidence for training-induced plasticity in multisensory brain structures: an MEG Study, PLoS One, 2012, 7, e36534 http://dx.doi.org/10.1371/journal.pone.0036534CrossrefGoogle Scholar

  • [65] Butler A.J., James T.W., James K.H., Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations, J. Cogn. Neurosci., 2011, 23, 3515–3528 http://dx.doi.org/10.1162/jocn_a_00015CrossrefGoogle Scholar

  • [66] Butler A.J., James K.H., Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity, J. Cogn. Neuroscience, 2013, 25, 203–218 http://dx.doi.org/10.1162/jocn_a_00284CrossrefGoogle Scholar

  • [67] Bremner A., Lewkowicz D., Spence C., Multisensory development, Oxford University Press, Oxford, UK, 2012 http://dx.doi.org/10.1093/acprof:oso/9780199586059.001.0001CrossrefGoogle Scholar

  • [68] Stein B.E., Rowland B.A., Organization and plasticity in multisensory integration: early and late experience affects its governing principles, Prog. Brain Res., 2011, 191, 145–163 http://dx.doi.org/10.1016/B978-0-444-53752-2.00007-2CrossrefGoogle Scholar

  • [69] Wallace M.T., Carriere B.N., Perrault T.J., Vaughan J.W., Stein B.E., The development of cortical multisensory integration, J. Neurosci., 2006, 26, 11844–11849 http://dx.doi.org/10.1523/JNEUROSCI.3295-06.2006CrossrefGoogle Scholar

  • [70] Carriere B.N., Royal D.W., Perrault T.J., Morrison S.P., Vaughan J.W., Stein B.E., et al., Visual deprivation alters the development of cortical multisensory integration, J. Neurophysiol., 2007, 98, 2858–2867 http://dx.doi.org/10.1152/jn.00587.2007CrossrefGoogle Scholar

  • [71] Wallace M.T., Stein B.E., Early experience determines how the senses will interact, J. Neurophysiol., 2007, 97, 921–926 http://dx.doi.org/10.1152/jn.00497.2006CrossrefGoogle Scholar

  • [72] Neil P.A., Chee-Ruiter C., Scheier C., Lewkowicz D.J., Shimojo S., Development of multisensory spatial integration and perception in humans, Dev. Sci., 2006, 9, 454–464 http://dx.doi.org/10.1111/j.1467-7687.2006.00512.xCrossrefGoogle Scholar

  • [73] Bahrick L.E., Lickliter R., Intersensory redundancy guides attentional selectivity and perceptual learning in infancy, Dev. Psychol., 2000, 36, 190–201 http://dx.doi.org/10.1037/0012-1649.36.2.190CrossrefGoogle Scholar

  • [74] Molholm S., Ritter W., Javitt D.C., Foxe J.J., Multisensory visualauditory object recognition in humans: a high-density electrical mapping study, Cereb. Cortex, 2004, 14, 452–465 http://dx.doi.org/10.1093/cercor/bhh007CrossrefGoogle Scholar

  • [75] Ullsperger P., Erdmann U., Freude G., Dehoff W., When sound and picture do not fit: mismatch negativity and sensory interaction, Int. J. Psychophysiol., 2006, 59, 3–7 http://dx.doi.org/10.1016/j.ijpsycho.2005.06.007CrossrefGoogle Scholar

  • [76] Spence C., Crossmodal correspondences: a tutorial review, Atten. Percept. Psychophys., 2011, 73, 971–995 http://dx.doi.org/10.3758/s13414-010-0073-7CrossrefGoogle Scholar

  • [77] Sadato N., Pascual-Leone A., Grafman J., Ibañez V., Deiber M. P., Dold G., et al., Activation of the primary visual cortex by Braille reading in blind subjects, Nature, 1996, 380, 526–528 http://dx.doi.org/10.1038/380526a0CrossrefGoogle Scholar

  • [78] Collignon O., Voss P., Lassonde M., Lepore F., Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects, Exp. Brain Res., 2009, 192, 343–358 http://dx.doi.org/10.1007/s00221-008-1553-zCrossrefGoogle Scholar

  • [79] Amedi A., Floel A., Knecht S., Zohary E., Cohen L.G., Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects, Nat. Neurosci., 2004, 7, 1266–1270 http://dx.doi.org/10.1038/nn1328CrossrefGoogle Scholar

  • [80] Leonard M.K., Ferjan Ramirez N., Torres C., Travis K.E., Hatrak M., Mayberry R.I., et al., Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex, J. Neurosci., 2012, 32, 9700–9705 http://dx.doi.org/10.1523/JNEUROSCI.1002-12.2012CrossrefGoogle Scholar

  • [81] Sandmann P., Dillier N., Eichele T., Meyer M., Kegel A., Pascual-Marqui R.D., et al., Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users, Brain, 2012, 135, 555–568 http://dx.doi.org/10.1093/brain/awr329CrossrefGoogle Scholar

  • [82] Herholz S.C., Zatorre R.J., Musical training as a framework for brain plasticity: behavior, function, and structure, Neuron, 2012, 76, 486–502 http://dx.doi.org/10.1016/j.neuron.2012.10.011CrossrefGoogle Scholar

  • [83] Schulz M., Ross B., Pantev C., Evidence for training-induced crossmodal reorganization of cortical functions in trumpet players, Neuroreport, 2003, 14, 157–161 http://dx.doi.org/10.1097/00001756-200301200-00029CrossrefGoogle Scholar

  • [84] Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs S., et al., Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction, Neuroimage, 2006, 30, 917–926 http://dx.doi.org/10.1016/j.neuroimage.2005.10.044CrossrefGoogle Scholar

  • [85] Haslinger B., Erhard P., Altenmüller E., Schroeder U., Boecker H., Ceballos-Baumann A.O., Transmodal sensorimotor networks during action observation in professional pianists, J. Cogn. Neurosci., 2005, 17, 282–293 http://dx.doi.org/10.1162/0898929053124893CrossrefGoogle Scholar

  • [86] Stevenson R.A., Wilson M.M., Powers A.R., Wallace M.T., The effects of visual training on multisensory temporal processing, Exp. Brain Res., 2013, 225, 479–489 http://dx.doi.org/10.1007/s00221-012-3387-yCrossrefGoogle Scholar

  • [87] Lee H.L., Noppeney U., Long-term music training tunes how the brain temporally binds signals from multiple senses, Proc. Natl. Acad. Sci., 2011, 108, E1441–E1450 http://dx.doi.org/10.1073/pnas.1115267108CrossrefGoogle Scholar

  • [88] Luo C., Guo Z., Lai Y., Liao W., et al., Liu Q., Kendrick K.M., et al., Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI, PloS One, 2012, 7, e36568 http://dx.doi.org/10.1371/journal.pone.0036568CrossrefGoogle Scholar

  • [89] Oechslin M.S., Imfeld A., Loenneker T., Meyer M., Jäncke L., The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study, Front. Hum. Neurosci., 2010, 3, 76–86 http://dx.doi.org/10.3389/neuro.09.076.2009CrossrefGoogle Scholar

  • [90] Imfeld A., Oechslin M.S., Meyer M., Loenneker T., Jancke L., White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study, Neuroimage, 2009, 46, 600–607 http://dx.doi.org/10.1016/j.neuroimage.2009.02.025CrossrefGoogle Scholar

  • [91] Musacchia G., Sams M., Skoe E., Kraus N., Musicians have enhanced subcortical auditory and audiovisual processing of speech and music, Proc. Natl. Acad. Sci. USA, 2007, 104, 15894–15898 http://dx.doi.org/10.1073/pnas.0701498104CrossrefGoogle Scholar

  • [92] Lahav A., Saltzman E., Schlaug G., Action representation of sound: audiomotor recognition network while listening to newly acquired actions, J. Neurosci., 2007, 27, 308–314 http://dx.doi.org/10.1523/JNEUROSCI.4822-06.2007CrossrefGoogle Scholar

  • [93] D’Ausilio A., Altenmüller E., Olivetti Belardinelli M., Lotze M., Crossmodal plasticity of the motor cortex while listening to a rehearsed musical piece, Eur. J. Neurosci., 2006, 24, 955–958 http://dx.doi.org/10.1111/j.1460-9568.2006.04960.xCrossrefGoogle Scholar

  • [94] Chen J.L., Rae C., Watkins K.E., Learning to play a melody: an fMRI study examining the formation of auditory-motor associations, Neuroimage, 2012, 59, 1200–1208 http://dx.doi.org/10.1016/j.neuroimage.2011.08.012CrossrefGoogle Scholar

  • [95] Bangert M., Altenmüller E.O., Mapping perception to action in piano practice: a longitudinal DC-EEG study, BMC Neuroscience, 2003, 4, 26–34 http://dx.doi.org/10.1186/1471-2202-4-26CrossrefGoogle Scholar

  • [96] Naumer M.J., Doehrmann O., Müller N.G., Muckli L., Cortical plasticity of audio-visual object representations, Cereb. Cortex, 2009, 19, 1641–1653 http://dx.doi.org/10.1093/cercor/bhn200CrossrefGoogle Scholar

  • [97] Scholz J., Klein M.C., Behrens T.E.J., Johansen-Berg H., Training induces changes in white-matter architecture, Nat. Neurosci., 2009, 12, 1370–1371 http://dx.doi.org/10.1038/nn.2412CrossrefGoogle Scholar

  • [98] Zatorre R.J., Chen J.L., Penhune V.B., When the brain plays music: auditory-motor interactions in music perception and production, Nat. Rev. Neurosci., 2007, 8, 547–558 http://dx.doi.org/10.1038/nrn2152CrossrefGoogle Scholar

  • [99] Shams L., Seitz A.R., Benefits of multisensory learning, Trends Cogn. Sci., 2008, 12, 411–417 http://dx.doi.org/10.1016/j.tics.2008.07.006CrossrefGoogle Scholar

  • [100] Wallace M., The development of multisensory processes, Cogn. Proc., 2004, 5, 69–83 http://dx.doi.org/10.1007/s10339-004-0017-zCrossrefGoogle Scholar

  • [101] Mishra J., Martinez A., Sejnowski T.J., Hillyard S.A., Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion, J. Neurosci., 2007, 27, 4120–4131 http://dx.doi.org/10.1523/JNEUROSCI.4912-06.2007CrossrefGoogle Scholar

  • [102] Bhattacharya J., Shams L., Shimojo S., Sound-induced illusory flash perception: role of gamma band responses, Neuroreport, 2002, 13, 1727–1730 http://dx.doi.org/10.1097/00001756-200210070-00007CrossrefGoogle Scholar

  • [103] Schroeder C.E., Lakatos P., Kajikawa Y., Partan S., Puce A., Neuronal oscillations and visual amplification of speech, Trends Cogn. Sci., 2008, 12, 106–113 http://dx.doi.org/10.1016/j.tics.2008.01.002CrossrefGoogle Scholar

  • [104] Roelfsema P.R., Engel A.K., König P., Singer W., Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature, 1997, 385, 157–161 http://dx.doi.org/10.1038/385157a0CrossrefGoogle Scholar

  • [105] Butler J.S., Foxe J., Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling, J. Neurosci., 2012, 32, 15338–15344 http://dx.doi.org/10.1523/JNEUROSCI.1796-12.2012CrossrefGoogle Scholar

  • [106] Seitz A.R., Dinse H.R., A common framework for perceptual learning, Curr. Opin. Neurobiol., 2007, 17, 148–153 http://dx.doi.org/10.1016/j.conb.2007.02.004CrossrefGoogle Scholar

  • [107] Schneider S., Schönle P., Altenmüller E., Münte T., Using musical instruments to improve motor skill recovery following a stroke, J. Neurol., 2007, 254, 1339–1346 http://dx.doi.org/10.1007/s00415-006-0523-2CrossrefGoogle Scholar

  • [108] Altenmüller E., Marco-Pallares J., Münte T.F., Schneider S., Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy, Ann. NY Acad. Sci., 2009, 1169, 395–405 http://dx.doi.org/10.1111/j.1749-6632.2009.04580.xCrossrefGoogle Scholar

  • [109] De Bruin N., Doan J.B., Turnbull G., Suchowersky O., Bonfield S., Hu B., et al., Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking, Parkinsons Dis., 2010, 483530 Google Scholar

  • [110] Thaut M.H., McIntosh G.C., Rice R.R., Miller R.A., Rathbun J., Brault J.M., Rhythmic auditory stimulation in gait training for Parkinson’s disease patients, Mov. Disord., 1996, 11, 193–200 http://dx.doi.org/10.1002/mds.870110213CrossrefGoogle Scholar

  • [111] Hackney M.E., Earhart G.M., Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom, J. Rehab. Med., 2009, 41, 475–481 http://dx.doi.org/10.2340/16501977-0362CrossrefGoogle Scholar

  • [112] Heiberger L., Maurer C., Amtage F., Mendez-Balbuena I., Schulte-Mönting J., Hepp-Reymond M.C., et al., Impact of a weekly dance class on the functional mobility and on the quality of life of individuals with Parkinson’s disease, Front. Aging Neurosci., 2011, 3, 14 http://dx.doi.org/10.3389/fnagi.2011.00014CrossrefGoogle Scholar

  • [113] de Dreu M.J., van der Wilk A.S., Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S114–S119 http://dx.doi.org/10.1016/S1353-8020(11)70036-0CrossrefGoogle Scholar

  • [114] Bhatt T., Yang F., Mak M.K., Hui-Chan C.W., Pai Y.C., Effect of externally cued training on dynamic stability control during the sit-to-stand task in people with Parkinson disease, Phys. Ther., 2013, 93, 492–503 http://dx.doi.org/10.2522/ptj.20100423CrossrefGoogle Scholar

  • [115] Mozolic J., Hugenschmidt C., Peiffer A., Laurienti P., Multisensory integration and aging, In: Murray M.M., Wallace M.T. (eds), The neural bases of multisensory processes, CRC Press, Boca Raton, FL, USA, 2012 Google Scholar

  • [116] Wu J., Yang J., Yu Y., Li Q., Nakamura N., Shen Y., et al., Delayed audiovisual integration of patients with mild cognitive impairment and Alzheimer’s disease compared with normal aged controls, J. Alzheimers Dis., 2012, 32, 317–328 Google Scholar

  • [117] Foster P., Rosenblatt K., Kuljiš R., Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease, Front. Neurol., 2011, 2, 28–35 http://dx.doi.org/10.3389/fneur.2011.00028CrossrefGoogle Scholar

  • [118] Lautenschlager N.T., Cox K., Kurz A.F., Physical activity and mild cognitive impairment and Alzheimer’s disease, Curr. Neurol. Neurosci. Rep., 2010, 10, 352–358 http://dx.doi.org/10.1007/s11910-010-0121-7CrossrefGoogle Scholar

  • [119] Valenzuela M., Brayne C., Sachdev P., Wilcock G., Matthews F., Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort, Am. J. Epidemiol., 2011, 173, 1004–1012 http://dx.doi.org/10.1093/aje/kwq476CrossrefGoogle Scholar

  • [120] Fratiglioni L., Qiu C., Prevention of common neurodegenerative disorders in the elderly, Exp. Gerontol., 2009, 44, 46–50 http://dx.doi.org/10.1016/j.exger.2008.06.006CrossrefGoogle Scholar

  • [121] Van De Winckel A., Feys H., De Weerdt W., Dom R., Cognitive and behavioural effects of music-based exercises in patients with dementia, Clin. Rehabil., 2004, 18, 253–260 http://dx.doi.org/10.1191/0269215504cr750oaCrossrefGoogle Scholar

  • [122] Hanna-Pladdy B., MacKay A., The relation between instrumental musical activity and cognitive aging, Neuropsychology, 2011, 25, 378–386 http://dx.doi.org/10.1037/a0021895CrossrefGoogle Scholar

  • [123] Parbery-Clark A., Strait D.L., Anderson S., Hittner E., Kraus N., Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise, PLoS One, 2011, 6, e18082 http://dx.doi.org/10.1371/journal.pone.0018082CrossrefGoogle Scholar

  • [124] Parbery-Clark A., Anderson S., Hittner E., Kraus N., Musical experience offsets age-related delays in neural timing, Neurobiol. Aging, 2012, 33, 1483–1491 http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.015CrossrefGoogle Scholar

  • [125] Bezzola L., Mérillat S., Gaser C., Jäncke L., Training-induced neural plasticity in golf novices, J. Neurosci., 2011, 31, 12444–12448 http://dx.doi.org/10.1523/JNEUROSCI.1996-11.2011CrossrefGoogle Scholar

  • [126] Kanai R., Rees G., The structural basis of inter-individual differences in human behaviour and cognition, Nat. Rev. Neurosci., 2011, 12, 231–242 http://dx.doi.org/10.1038/nrn3000CrossrefGoogle Scholar

  • [127] Thiebaut de Schotten M., Ffytche D.H., Bizzi A., Dell’Acqua F., Allin M., Walshe M., et al., Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography, Neuroimage, 2011, 54, 49–59 http://dx.doi.org/10.1016/j.neuroimage.2010.07.055CrossrefGoogle Scholar

  • [128] Ventura-Campos N., Spontaneous brain activity predicts learning ability of foreign sounds, J. Neurosci., 2013, 33, 9295–9305 http://dx.doi.org/10.1523/JNEUROSCI.4655-12.2013CrossrefGoogle Scholar

  • [129] Wong P.C.M., Warrier C.M., Penhune V.B., Roy A.K., Sadehh A., Parrish T.B., et al., Volume of left Heschl’s Gyrus and linguistic pitch learning, Cereb. Cortex, 2008, 18, 828–836 http://dx.doi.org/10.1093/cercor/bhm115CrossrefGoogle Scholar

  • [130] Zatorre R.J., Delhommeau K., Zarate J.M., Modulation of auditory cortex response to pitch variation following training with microtonal melodies, Front. Psychol., 2012, 3, 544 http://dx.doi.org/10.3389/fpsyg.2012.00544CrossrefGoogle Scholar

  • [131] Baldassarre A., Lewis C.M., Committeri G., Snyder A.Z., Romani G.L., Corbetta M., Individual variability in functional connectivity predicts performance of a perceptual task, Proc. Natl. Acad. Sci. USA, 2012, 109, 3516–3521 http://dx.doi.org/10.1073/pnas.1113148109CrossrefGoogle Scholar

  • [132] Elbert T., Pantev C., Wienbruch C., Increased cortical representation of the fingers of the left hand in string players, Science, 1995, 270, 305–307 http://dx.doi.org/10.1126/science.270.5234.305CrossrefGoogle Scholar

  • [133] Schlaug G., Jäncke L., Huang Y., In vivo evidence of structural brain asymmetry in musicians, Science, 1995, 267, 699–701 http://dx.doi.org/10.1126/science.7839149CrossrefGoogle Scholar

  • [134] Penhune V.B., Sensitive periods in human development: evidence from musical training, Cortex, 2011, 47, 1126–1137 http://dx.doi.org/10.1016/j.cortex.2011.05.010CrossrefGoogle Scholar

  • [135] Steele C.J., Bailey J.A., Zatorre R.J., Penhune V.B., Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period, J. Neurosci., 2013, 33, 1282–1290 http://dx.doi.org/10.1523/JNEUROSCI.3578-12.2013CrossrefGoogle Scholar

  • [136] Boyke J., Driemeyer J., Gaser C., Buchel C., May A., Traininginduced brain structure changes in the elderly, J. Neurosci., 2008, 28, 7031–7035 http://dx.doi.org/10.1523/JNEUROSCI.0742-08.2008CrossrefGoogle Scholar

About the article

Published Online: 2013-09-13

Published in Print: 2013-09-01


Citation Information: Translational Neuroscience, Volume 4, Issue 3, Pages 337–348, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0134-1.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sarah A. Gerson, Andrea Schiavio, Renee Timmers, Sabine Hunnius, and Alexander N. Sokolov
PLOS ONE, 2015, Volume 10, Number 6, Page e0130960
[2]
Christo Pantev, Evangelos Paraskevopoulos, Anja Kuchenbuch, Yao Lu, and Sibylle C. Herholz
European Journal of Neuroscience, 2015, Volume 41, Number 5, Page 709
[3]
Evangelos Paraskevopoulos, Anja Kuchenbuch, Sibylle C. Herholz, Nikolaos Foroglou, Panagiotis Bamidis, and Christo Pantev
Human Brain Mapping, 2014, Volume 35, Number 11, Page 5389

Comments (0)

Please log in or register to comment.
Log in