Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Pathogenesis, modulation, and therapy of Alzheimer’s disease: A perspective on roles of liver-X receptors

Jasminka Štefulj
  • Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
  • Croatian Catholic University, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ute Panzenboeck / Patrick Hof
  • Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goran Šimić
  • Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-13 | DOI: https://doi.org/10.2478/s13380-013-0136-z

Abstract

The pathogenesis of Alzheimer’s disease (AD) has been mostly linked to aberrant amyloid beta (Aβ) and tau proteins metabolism, disturbed lipid/cholesterol homeostasis, and progressive neuroinflammation. Liver X receptors (LXR) are ligand-activated transcription factors, best known as the key regulators of cholesterol metabolism and transport. In addition, LXR signaling has been shown to have significant anti-inflammatory properties. In this brief review, we focus on the outcome of studies implicating LXR in the pathogenesis, modulation, and therapy of AD.

Keywords: Alzheimer’s disease; Neurodegeneration; Amyloid-beta; Cholesterol; Liver-X receptors; LXR agonists; Neuroinflammation; Transgenic mouse models

  • [1] Lim A., Tsuang D., Kukull W., Nochlin D., Leverenz J., McCormick W., et al., Clinico-neuropathological correlation of Alzheimer’s disease in a community-based case series, J. Am. Geriatr., 1999, 47, 564–569 CrossrefGoogle Scholar

  • [2] Alzheimer’s Association, 2009 Alzheimer’s disease facts and figures, Alzheimers Dement., 2009, 5, 234–270 Google Scholar

  • [3] Barnes D.E., Yaffe K., The projected effect of risk factor reduction on Alzheimer’s disease prevalence, Lancet Neurol., 2011, 10, 819–828 http://dx.doi.org/10.1016/S1474-4422(11)70072-2CrossrefGoogle Scholar

  • [4] Olgiati P., Politis A.M., Papadimitriou G.N., De Ronchi D., Serretti A., Genetics of late-onset Alzheimer’s disease: update from the alzgene database and analysis of shared pathways, Int. J. Alzheimers Dis., 2011, 2011, 832379 http://dx.doi.org/10.4061/2011/832379CrossrefGoogle Scholar

  • [5] Jones L., Holmans P.A., Hamshere M.L., Harold D., Moskvina V., Ivanov D., et al., Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease, PLoS One, 2010, 5, e13950 http://dx.doi.org/10.1371/journal.pone.0013950CrossrefGoogle Scholar

  • [6] Palop J.J., Mucke L., Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks, Nat. Neurosci., 2010, 13, 812–818 http://dx.doi.org/10.1038/nn.2583CrossrefGoogle Scholar

  • [7] Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P.R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol. Appl. Neurobiol., 2009, 35, 532–554 http://dx.doi.org/10.1111/j.1365-2990.2009.01038.xCrossrefGoogle Scholar

  • [8] Di Paolo G., Kim T.W., Linking lipids to Alzheimer’s disease: cholesterol and beyond, Nat. Rev. Neurosci., 2011, 12, 284–296 http://dx.doi.org/10.1038/nrn3012CrossrefGoogle Scholar

  • [9] Heneka M.T., O’Banion M.K., Terwel D., Kummer M.P., Neuroinflammatory processes in Alzheimer’s disease, J. Neural Transm., 2010, 117, 919–947 http://dx.doi.org/10.1007/s00702-010-0438-zCrossrefGoogle Scholar

  • [10] Citron M., Alzheimer’s disease: strategies for disease modification, Nat. Rev. Drug Discov., 2010, 9, 387–398 http://dx.doi.org/10.1038/nrd2896CrossrefGoogle Scholar

  • [11] Zhang Z.D., Burch P.E., Cooney A.J., Lanz R.B., Pereira F.A., Wu J.Q., et al., Genomic analysis of the nuclear receptor family: New insights into structure, regulation, and evolution from the rat genome, Genome Res., 2004, 14, 580–90 http://dx.doi.org/10.1101/gr.2160004CrossrefGoogle Scholar

  • [12] Janowski B.A., Willy P.J., Devi T.R., Falck J.R., Mangelsdorf D.J., An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha, Nature, 1996, 383, 728–731 http://dx.doi.org/10.1038/383728a0CrossrefGoogle Scholar

  • [13] Apfel R., Benbrook D., Lernhardt E., Ortiz M.A., Salbert G., Pfahl M., A novel orphan receptor-specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone-receptor subfamily, Mol. Cell. Biol., 1994, 14, 7025–7035 Google Scholar

  • [14] Hu Y-W., Zheng L., Wang Q., Regulation of cholesterol homeostasis by liver X receptors, Clin. Chim. Acta, 2010, 411, 617–625 http://dx.doi.org/10.1016/j.cca.2009.12.027CrossrefGoogle Scholar

  • [15] Zhao C., Dahlman-Wright K., Liver X receptor in cholesterol metabolism, J. Endocrinol., 2010, 204, 233–240 http://dx.doi.org/10.1677/JOE-09-0271CrossrefGoogle Scholar

  • [16] Calayir E., Becker T., Kratzer A., Ebner B., Panzenbock U., Stefujl J., et al., LXR-agonists regulate apoM expression differentially in liver and intestine, Curr. Phar. Biotechnol., 2008, 9, 516–521 http://dx.doi.org/10.2174/138920108786786376CrossrefGoogle Scholar

  • [17] Stefulj J., Panzenboeck U., Becker T., Hirschmugl B., Schweinzer C., Lang I., et al., Human Endothelial Cells of the Placental Barrier Efficiently Deliver Cholesterol to the Fetal Circulation via ABCA1 and ABCG1, Circ. Res., 2009, 104, 600–608 http://dx.doi.org/10.1161/CIRCRESAHA.108.185066CrossrefGoogle Scholar

  • [18] Joseph S.B., Castrillo A., Laffitte B.A., Mangelsdorf D.J., Tontonoz P., Reciprocal regulation of inflammation and lipid metabolism by liver X receptors, Nat. Med., 2003, 9, 213–219 http://dx.doi.org/10.1038/nm820CrossrefGoogle Scholar

  • [19] Mitro N., Mak P.A., Vargas L., Godio C., Hampton E., Molteni V., et al., The nuclear receptor LXR is a glucose sensor, Nature, 2007, 445, 219–223 http://dx.doi.org/10.1038/nature05449CrossrefGoogle Scholar

  • [20] Jakobsson T., Treuter E., Gustafsson J.A., Steffensen K.R., Liver X receptor biology and pharmacology: new pathways, challenges and opportunities, Trends Pharmacol. Sci., 2012, 33, 394–404 http://dx.doi.org/10.1016/j.tips.2012.03.013CrossrefGoogle Scholar

  • [21] Kim W.S., Bhatia S., Elliott D.A., Agholme L., Kågedal K., McCann H., et al., Increased ATP-binding cassette transporter A1 expression in Alzheimer’s disease hippocampal neurons, J. Alzheimers Dis., 2010, 21, 193–205 Google Scholar

  • [22] Akram A., Schmeidler J., Katsel P., Hof P.R., Haroutunian V., Association of ApoE and LRP mRNA levels with dementia and AD neuropathology, Neurobiol. Aging, 2012, 33, 628.e1–14 http://dx.doi.org/10.1016/j.neurobiolaging.2011.04.010CrossrefGoogle Scholar

  • [23] Akram A., Schmeidler J., Katsel P., Hof P.R., Haroutunian V., Increased expression of cholesterol transporter ABCA1 is highly correlated with severity of dementia in AD hippocampus, Brain Res., 2010, 1318, 167–177 http://dx.doi.org/10.1016/j.brainres.2010.01.006CrossrefGoogle Scholar

  • [24] Vuletic S., Jin L.W., Marcovina S.M., Peskind E.R., Moller T., Albers J.J., Widespread distribution of PLTP in human CNS: evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer’s disease, J. Lipid Res., 2003, 44, 1113–1123 http://dx.doi.org/10.1194/jlr.M300046-JLR200CrossrefGoogle Scholar

  • [25] Wahrle S.E., Jiang H., Parsadanian M., Hartman R.E., Bales K.R., Paul S.M., et al., Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease, J. Biol. Chem., 2005, 280, 43236–43242 http://dx.doi.org/10.1074/jbc.M508780200CrossrefGoogle Scholar

  • [26] Wahrle S.E., Jiang H., Parsadanian M., Kim J., Li A.M., Knoten A., et al., Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease, J. Clin. Invest., 2008, 118, 671–682 Google Scholar

  • [27] Kim J., Jiang H., Park S., Eltorai A.E.M., Stewart F.R., Yoon H., et al., Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-beta amyloidosis, J. Neurosci., 2011, 31, 18007–18012 http://dx.doi.org/10.1523/JNEUROSCI.3773-11.2011CrossrefGoogle Scholar

  • [28] Wang L., Schuster G.U., Hultenby K., Zhang Q.H., Andersson S., Gustafsson J.A., Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration, Proc. Natl. Acad. Sci. USA, 2002, 99, 3878–13883 http://dx.doi.org/10.1073/pnas.002025599CrossrefGoogle Scholar

  • [29] Andersson S., Gustafsson N., Warner M., Gustafsson J.A., Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice, Proc. Natl. Acad. Sci. USA, 2005, 102, 3857–3862 http://dx.doi.org/10.1073/pnas.0500634102CrossrefGoogle Scholar

  • [30] Fan X., Kim H-J., Bouton D., Warner M., Gustafsson J-A., Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons, Proc. Natl. Acad. Sci. USA, 2008, 105, 13445–13450 http://dx.doi.org/10.1073/pnas.0806974105CrossrefGoogle Scholar

  • [31] Zelcer N., Khanlou N., Clare R., Jiang Q., Reed-Geaghan E.G., Landreth G.E., et al., Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 10601–10606 http://dx.doi.org/10.1073/pnas.0701096104CrossrefGoogle Scholar

  • [32] Terwel D., Steffensen K.R., Verghese P.B., Kummer M.P., Gustafsson J.A., Holtzman D.M., et al., Critical role of astroglial apolipoprotein E and liver X receptor-alpha expression for microglial Abeta phagocytosis, J. Neurosci., 2011, 31, 7049–7059 http://dx.doi.org/10.1523/JNEUROSCI.6546-10.2011CrossrefGoogle Scholar

  • [33] Liu B., Li H., Repa J.J., Turley S.D., Dietschy J.M., Genetic variations and treatments that affect the lifespan of the NPC1 mouse, J. Lipid Res., 2008, 49, 663–669 http://dx.doi.org/10.1194/jlr.M700525-JLR200CrossrefGoogle Scholar

  • [34] Adighibe O., Arepalli S., Duckworth J., Hardy J., Wavrant-De Vrieze F., Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer’s disease, Neurobiol. Aging, 2006, 27, 1431–1434 http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.010CrossrefGoogle Scholar

  • [35] Rodriguez-Rodriguez E., Llorca J., Mateo I., Infante J., Sanchez-Quintana C., Garcia-Gorostiaga I., et al., No association of genetic variants of liver X receptor-beta with Alzheimer’s disease risk, Am. J. Med. Genet. B.Neuropsychiatr. Genet., 2008, 147B, 650–653 http://dx.doi.org/10.1002/ajmg.b.30652CrossrefGoogle Scholar

  • [36] Giedraitis V., Kilander L., Degerman-Gunnarsson M., Sundelof J., Axelsson T., Syvanen A.C., et al., Genetic analysis of Alzheimer’s disease in the Uppsala Longitudinal Study of Adult Men, Dement. Geriatr. Cogn. Disord., 2009, 27, 59–68 http://dx.doi.org/10.1159/000191203CrossrefGoogle Scholar

  • [37] Rodriguez-Rodriguez E., Sanchez-Juan P., Mateo I., Infante J., Sanchez-Quintana C., Garcia-Gorostiaga I., et al., Interaction between CD14 and LXR beta genes modulates Alzheimer’s disease risk, J. Neurol. Sci., 2008, 264, 97–99 http://dx.doi.org/10.1016/j.jns.2007.08.001CrossrefGoogle Scholar

  • [38] Infante J., Rodriguez-Rodriguez E., Mateo I., Llorca J., Vazquez-Higuera J.L., Berciano J., et al., Gene-gene interaction between heme oxygenase-1 and liver X receptor-beta and Alzheimer’s disease risk, Neurobiol. Aging, 2010, 31, 710–714 http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.025CrossrefGoogle Scholar

  • [39] Viennois E., Mouzat K., Dufour J., Morel L., Lobaccaro J.M., Baron S., Selective liver X receptor modulators (SLiMs): What use in human health?, Mol. Cell. Endocrinol., 2012, 351, 129–141 http://dx.doi.org/10.1016/j.mce.2011.08.036CrossrefGoogle Scholar

  • [40] Leduc V., Jasmin-Belanger S., Poirier J., APOE and cholesterol homeostasis in Alzheimer’s disease, Trends Mol. Med., 2010, 16, 469–477 http://dx.doi.org/10.1016/j.molmed.2010.07.008CrossrefGoogle Scholar

  • [41] Martins I.J., Berger T., Sharman M.J., Verdile G., Fuller S.J., Martins R.N., Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease, J. Neurochem., 2009, 111, 1275–1308 http://dx.doi.org/10.1111/j.1471-4159.2009.06408.xCrossrefGoogle Scholar

  • [42] Gamba P., Testa G., Sottero B., Gargiulo S., Poli G., Leonarduzzi G., The link between altered cholesterol metabolism and Alzheimer’s disease, Ann. NY Acad. Sci., 2012, 1259, 54–64 http://dx.doi.org/10.1111/j.1749-6632.2012.06513.xCrossrefGoogle Scholar

  • [43] Whitney K.D., Watson M.A., Collins J.L., Benson W.G., Stone T.M., Numerick M.J., et al., Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system, Mol. Endocrinol., 2002, 16, 1378–1385 http://dx.doi.org/10.1210/me.16.6.1378CrossrefGoogle Scholar

  • [44] Fukumoto H., Deng A., Irizarry M.C., Fitzgerald M.L., Rebeck G.W., Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels, J. Biol. Chem., 2002, 277, 48508–48513 http://dx.doi.org/10.1074/jbc.M209085200CrossrefGoogle Scholar

  • [45] Koldamova R.P., Lefterov L.M., Ikonomovic M.D., Skoko J., Lefterov P.I., Isanskis B.A., et al., 22R-Hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion, J. Biol. Chem., 2003, 278, 13244–13256 http://dx.doi.org/10.1074/jbc.M300044200CrossrefGoogle Scholar

  • [46] Liang Y., Lin S.Z., Beyer T.P., Zhang Y.Y., Wu X., Bales K.R., et al., A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes, J. Neurochem., 2004, 88, 623–634 http://dx.doi.org/10.1111/j.1471-4159.2004.02183.xCrossrefGoogle Scholar

  • [47] Abildayeva K., Jansen P.J., Hirsch-Reinshagen V., Bloks V.W., Bakker A.H.F., Ramaekers F.C.S., et al., 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux, J. Biol. Chem., 2006, 281, 12799–12808 http://dx.doi.org/10.1074/jbc.M601019200CrossrefGoogle Scholar

  • [48] Kim W.S., Chan S.L., Hill A.F., Guillemin G.J., Garner B., Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons, J. Alzheimers Dis., 2009, 16, 121–131 Google Scholar

  • [49] Prasanthi J.R.P., Huls A., Thomasson S., Thompson A., Schommer E., Ghribi O., Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells, Mol. Neurodegener., 2009, 4, 1 http://dx.doi.org/10.1186/1750-1326-4-1CrossrefGoogle Scholar

  • [50] Nelissen K., Mulder M., Smets I., Timmermans S., Smeets K., Ameloot M., et al., Liver X receptors regulate cholesterol homeostasis in oligodendrocytes, J. Neurosci. Res., 2012, 90, 60–71 http://dx.doi.org/10.1002/jnr.22743CrossrefGoogle Scholar

  • [51] Panzenboeck U., Kratzer I., Sovic A., Wintersperger A., Bernhart E., Harnmer A., et al., Regulatory effects of synthetic liver X receptor- and peroxisome-proliferator activated receptor agonists on sterol transport pathways in polarized cerebrovascular endothelial cells, Int. J. Biochem. Cell Biol., 2006, 38, 1314–1329 http://dx.doi.org/10.1016/j.biocel.2006.01.013CrossrefGoogle Scholar

  • [52] Burns M.P., Vardanian L., Pajoohesh-Ganji A., Wang L.L., Cooper M., Harris D.C., et al., The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo, J. Neurochem., 2006, 98, 792–800 http://dx.doi.org/10.1111/j.1471-4159.2006.03925.xCrossrefGoogle Scholar

  • [53] Eckert G.P., Vardanian L., Rebeck G.W., Burns M.P., Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317, Neurosci. Lett., 2007, 423, 47–52 http://dx.doi.org/10.1016/j.neulet.2007.05.063CrossrefGoogle Scholar

  • [54] Suon S., Zhao J., Villarreal S.A., Anumula N., Liu M.L., Carangia L.M., et al., Systemic treatment with liver X receptor agonists raises apolipoprotein E, cholesterol, and amyloid-beta peptides in the cerebral spinal fluid of rats, Mol. Neurodegener. 2010, 5, 44 http://dx.doi.org/10.1186/1750-1326-5-44CrossrefGoogle Scholar

  • [55] Koldamova R.P., Lefterov I.M., Staufenbiel M., Wolfe D., Huang S., Glorioso J.C., et al., The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease, J. Biol. Chem., 2005, 280, 4079–4088 http://dx.doi.org/10.1074/jbc.M411420200CrossrefGoogle Scholar

  • [56] Lefterov I., Bookout A., Wang Z., Staufenbiel M., Mangelsdorf D., Koldamova R., Expression profiling in APP23 mouse brain: inhibition of A beta amyloidosis and inflammation in response to LXR agonist treatment, Mol. Neurodegener., 2007, 2, 20 http://dx.doi.org/10.1186/1750-1326-2-20CrossrefGoogle Scholar

  • [57] Riddell D.R., Zhou H., Comery T.A., Kouranova E., Lo C.F., Warwick H.K., et al., The LXR agonist TO901317 selectively lowers hippocampal A beta 42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease, Mol. Cell. Neurosci., 2007, 34, 621–628 http://dx.doi.org/10.1016/j.mcn.2007.01.011CrossrefGoogle Scholar

  • [58] Jiang Q., Lee C.Y.D., Mandrekar S., Wilkinson B., Cramer P., Zelcer N., et al., ApoE promotes the proteolytic degradation of A beta, Neuron, 2008, 58, 681–693 http://dx.doi.org/10.1016/j.neuron.2008.04.010CrossrefGoogle Scholar

  • [59] Donkin J.J., Stukas S., Hirsch-Reinshagen V., Namjoshi D., Wilkinson A., May S., et al., ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 Mice, J. Biol. Chem., 2010, 285, 34144–34154 http://dx.doi.org/10.1074/jbc.M110.108100CrossrefGoogle Scholar

  • [60] Cui W.G., Sun Y., Wang Z.P., Xu C.C., Xu L., Wang F., et al., Activation of liver X receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels, Neurochem. Res., 2011, 36, 1910–1921 http://dx.doi.org/10.1007/s11064-011-0513-3CrossrefGoogle Scholar

  • [61] Vanmierlo T., Rutten K., Dederen J., Bloks V.W., van Vark-van der Zee L.C., Kuipers F., et al., Liver X receptor activation restores memory in aged AD mice without reducing amyloid, Neurobiol. Aging, 2011, 32, 1262–1272 http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.005CrossrefGoogle Scholar

  • [62] Repa J.J., Li H., Frank-Cannon T.C., Valasek M.A., Turley S.D., Tansey M.G., et al., Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse, J. Neurosci., 2007, 27, 14470–14480 http://dx.doi.org/10.1523/JNEUROSCI.4823-07.2007CrossrefGoogle Scholar

  • [63] Karran E., Mercken M., De Strooper B., The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics, Nat. Rev. Drug Discov., 2011, 10, 698–712 http://dx.doi.org/10.1038/nrd3505CrossrefGoogle Scholar

  • [64] Koldamova T., Lefterov I.M., Staufenbiel M., Wolfe D., Huang S.H., Glorioso J.C., et al., The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease, J. Biol. Chem., 2005, 280, 4079–4088 http://dx.doi.org/10.1074/jbc.M411420200CrossrefGoogle Scholar

  • [65] Cui W., Sun Y., Wang Z., Xu C., Peng Y., Li R., Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice, Neuroscience, 2012, 210, 200–210 http://dx.doi.org/10.1016/j.neuroscience.2012.02.047CrossrefGoogle Scholar

  • [66] Sun Y., Yao J., Kim T.W., Tall A.R., Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion, J. Biol. Chem., 2003, 278, 27688–27694 http://dx.doi.org/10.1074/jbc.M300760200CrossrefGoogle Scholar

  • [67] Czech C., Burns M.P., Vardanian L., Augustin A., Jacobsen H., Baumann K., et al., Cholesterol independent effect of LXR agonist TO-901317 on gamma-secretase, J. Neurochem., 2007, 101, 929–936 http://dx.doi.org/10.1111/j.1471-4159.2007.04467.xCrossrefGoogle Scholar

  • [68] Burns M.P., Rebeck G.W., Intracellular cholesterol homeostasis and amyloid precursor protein processing, Biochim. Biophys. Acta, 2010, 1801, 853–859 http://dx.doi.org/10.1016/j.bbalip.2010.03.004CrossrefGoogle Scholar

  • [69] Schweinzer C., Kober A., Lang I., Etschmaier K., Scholler M., Kresse A., et al., Processing of endogenous AβPP in blood-brain barrier endothelial cells is modulated by liver-X receptor agonists and altered cellular cholesterol homeostasis, J. Alzheimers Dis., 2011, 27, 341–360 Google Scholar

  • [70] Fitz N.F., Cronican A., Pham T., Fogg A., Fauq A.H., Chapman R., et al., Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice, J. Neurosci., 2010, 30, 6862–6872 http://dx.doi.org/10.1523/JNEUROSCI.1051-10.2010CrossrefGoogle Scholar

  • [71] Štefulj J., Perić M., Malnar M., Košiček M., Schweinzer C, Živković J., et al., Pharmacological activation of LXRs decreases amyloid-β levels in Niemann-Pick type C model cells, 2013, Curr. Pharm. Biotechnol., 5, (in press) Google Scholar

  • [72] Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., et al., Inflammation and Alzheimer’s disease, Neurobiol. Aging, 2000, 21, 383–421 http://dx.doi.org/10.1016/S0197-4580(00)00124-XCrossrefGoogle Scholar

  • [73] Lee Y.J., Han S.B., Nam S.Y., Oh K.W., Hong J.T., Inflammation and Alzheimer’s Disease, Arch. Pharm. Res., 2010, 33, 1539–1556 http://dx.doi.org/10.1007/s12272-010-1006-7CrossrefGoogle Scholar

  • [74] Tuppo E.E., Arias H.R., The role of inflammation in Alzheimer’s disease, Int. J. Biochem. Cell Biol., 2005, 37, 289–305 http://dx.doi.org/10.1016/j.biocel.2004.07.009CrossrefGoogle Scholar

  • [75] Bensinger S.J., Tontonoz P., Integration of metabolism and inflammation by lipid-activated nuclear receptors, Nature, 2008, 454, 470–477 http://dx.doi.org/10.1038/nature07202CrossrefGoogle Scholar

  • [76] Zelcer N., Tontonoz P., Liver X receptors as integrators of metabolic and inflammatory signaling, J. Clin. Invest., 2006, 116, 607–614 http://dx.doi.org/10.1172/JCI27883CrossrefGoogle Scholar

  • [77] Lee C.S., Joe E.H., Jou I., Oxysterols suppress inducible nitric oxide synthase expression in lipopolysaccharide-stimulated astrocytes through liver X receptor, Neuroreport, 2006, 17, 183–187 http://dx.doi.org/10.1097/01.wnr.0000198436.52259.40CrossrefGoogle Scholar

  • [78] Kim O.S., Lee C.S., Joe E.H., Jou I., Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: oxidative stress acts through control of inflammation, Biochem. Biophys. Res. Commun., 2006, 342, 9–18 http://dx.doi.org/10.1016/j.bbrc.2006.01.107CrossrefGoogle Scholar

  • [79] Zhang-Gandhi C.X., Drew P.D., Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes, J. Neuroimmunol., 2007, 183, 50–59 http://dx.doi.org/10.1016/j.jneuroim.2006.11.007CrossrefGoogle Scholar

  • [80] Lee J.H., Park S.M., Kim O.S., Lee C.S., Woo J.H., Park S.J., et al., Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gammastimulated brain astrocytes, Mol. Cell, 2009, 35, 806–817 http://dx.doi.org/10.1016/j.molcel.2009.07.021CrossrefGoogle Scholar

  • [81] Morales J.R., Ballesteros I., Deniz J.M., Hurtado O., Vivancos J., Nombela F., et al., Activation of liver X receptors promotes neuroprotection and reduces brain inflammation in experimental stroke, Circulation, 2008, 118, 1450–1459 http://dx.doi.org/10.1161/CIRCULATIONAHA.108.782300CrossrefGoogle Scholar

  • [82] Alzheimers A., 2012 Alzheimer’s disease facts and figures, Alzheimers Dement., 2012, 8, 131–168 http://dx.doi.org/10.1016/j.jalz.2012.02.001CrossrefGoogle Scholar

  • [83] Spires T.L., Hyman B.T., Transgenic models of Alzheimer’s disease: learning from animals, NeuroRx, 2005, 2, 423–437 http://dx.doi.org/10.1602/neurorx.2.3.423CrossrefGoogle Scholar

  • [84] Grefhorst A., Elzinga B.M., Voshol P.J., Plösch T., Kok T., Bloks V.W., et al., Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles, J. Biol. Chem., 2002, 277, 34182–34190 http://dx.doi.org/10.1074/jbc.M204887200CrossrefGoogle Scholar

  • [85] Willy P.J., Mangelsdorf D.J., Unique requirements for retinoid dependent transcriptional activation by the orphan receptor LXR, Genes Dev., 1997, 11, 289–298 http://dx.doi.org/10.1101/gad.11.3.289CrossrefGoogle Scholar

  • [86] Cramer P.E., Cirrito J.R., Wesson D.W., Lee C.Y.D., Karlo J.C., Zinn A.E., et al., ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models, Science, 2012, 335, 1503–1506 http://dx.doi.org/10.1126/science.1217697CrossrefGoogle Scholar

  • [87] Fitz N.F., Cronican A.A., Lefterov I., Koldamova R., Comment on “ApoEdirected therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”, Science, 2013, 340, 924–c http://dx.doi.org/10.1126/science.1235809CrossrefGoogle Scholar

  • [88] Price A.R., Xu G.L., Siemienski Z.B., Smithson L.A., Borchelt D.R., Golde T.E., et al., Comment on “ ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models “, Science, 2013, 340, 924–d http://dx.doi.org/10.1126/science.1234089CrossrefGoogle Scholar

  • [89] Tesseur I., Lo A.C., Roberfroid A., Dietvorst S., Van Broeck B., Borgers M., et al., Comment on “ ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models “, Science, 2013, 340, 924–e http://dx.doi.org/10.1126/science.1233937CrossrefGoogle Scholar

  • [90] Veeraraghavalu K., Zhang C., Miller S., Hefendehl J.K., Rajapaksha T.W., Ulrich J., et al., Comment on “ ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models “, Science, 2013, 340, 924–f http://dx.doi.org/10.1126/science.1235505CrossrefGoogle Scholar

  • [91] Landreth G.E., Cramer P.E., Lakner M.M., Cirrito J.R., Wesson D.W., Brunden K.R., et al., Response to Comments on “ ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models “, Science, 2013, 340, 924–g http://dx.doi.org/10.1126/science.1234114CrossrefGoogle Scholar

  • [92] Rigamonti E., Helin L., Lestavel S., Mutka A. L., Lepore M., Fontaine C., et al., Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages, Circ. Res., 2005, 97, 682–689 http://dx.doi.org/10.1161/01.RES.0000184678.43488.9fCrossrefGoogle Scholar

  • [93] Kotokorpi P., Ellis E., Parini P., Nilsson L.M., Strom S., Steffensen K.R., et al., Physiological differences between human and rat primary hepatocytes in response to liver X receptor activation by 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl) amino]propyloxy]phenylacetic acid hydrochloride (GW3965), Mol. Pharmacol., 2007, 72, 947–955 http://dx.doi.org/10.1124/mol.107.037358Google Scholar

About the article

Published Online: 2013-09-13

Published in Print: 2013-09-01


Citation Information: Translational Neuroscience, Volume 4, Issue 3, Pages 349–356, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0136-z.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Matej Mihelčić, Goran Šimić, Mirjana Babić Leko, Nada Lavrač, Sašo Džeroski, Tomislav Šmuc, and Ornit Chiba-Falek
PLOS ONE, 2017, Volume 12, Number 10, Page e0187364
[2]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101

Comments (0)

Please log in or register to comment.
Log in