Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Modulators of amyloid protein aggregation and toxicity: EGCG and CLR01

Aida Attar
  • Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90025, USA
  • Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, 90025, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Farid Rahimi
  • Research School of Biology, College of Medicine, Biology, and Environment, The Australian National University, Canberra, ACT, 0200, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gal Bitan
  • Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90025, USA
  • Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, 90025, USA
  • Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, 90025, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s13380-013-0137-y

Abstract

Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies — the green-tea derivative (−)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01’s effects on amyloid β-protein, α-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.

Keywords: Amyloid; Amyloidosis; Alzheimer’s disease; Parkinson’s disease; Inhibitor; Molecular tweezers; Polyphenol

  • [1] Rahimi F., Shanmugam A., Bitan G., Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders, Curr. Alzheimer Res., 2008, 5, 319–341 CrossrefGoogle Scholar

  • [2] Fändrich M., Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity, J. Mol. Biol., 2012, 421, 427–440 Google Scholar

  • [3] Serpell L.C., Alzheimer’s amyloid fibrils: structure and assembly, Biochim. Biophys. Acta, 2000, 1502, 16–30 Google Scholar

  • [4] Vinters H.V., Tung S., Solis O.E., Pathologic Lesions in Alzheimer disease and Other Neurodegenerative Diseases—Cellular and Molecular Components, In: Rahimi F., Bitan G. (Eds.), Non-fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases, Springer, 2012 Google Scholar

  • [5] Hardy J.A., Higgins G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185 CrossrefGoogle Scholar

  • [6] Soto C., Estrada L., Amyloid inhibitors and β-sheet breakers, Subcell. Biochem., 2005, 38, 351–364 CrossrefGoogle Scholar

  • [7] Necula M., Kayed R., Milton S., Glabe C.G., Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct, J. Biol. Chem., 2007, 282, 10311–10324 CrossrefGoogle Scholar

  • [8] Ladiwala A.R., Dordick J.S., Tessier P.M., Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways, J. Biol. Chem., 2011, 286, 3209–3218 CrossrefGoogle Scholar

  • [9] Liu T., Bitan G., Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms, ChemMedChem, 2012, 7, 359–374 CrossrefGoogle Scholar

  • [10] Jan A., Adolfsson O., Allaman I., Buccarello A.L., Magistretti P.J., Pfeifer A., et al., Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species, J. Biol. Chem., 2011, 286, 8585–8596 CrossrefGoogle Scholar

  • [11] Eikelenboom P., Veerhuis R., Familian A., Hoozemans J.J., van Gool W.A., Rozemuller A.J., Neuroinflammation in plaque and vascular β-amyloid disorders: clinical and therapeutic implications, Neurodegener. Dis., 2008, 5, 190–193 CrossrefGoogle Scholar

  • [12] Esteras-Chopo A., Pastor M.T., Serrano L., Lopez de la Paz M., New strategy for the generation of specific D-peptide amyloid inhibitors, J. Mol. Biol., 2008, 377, 1372–1381 Google Scholar

  • [13] Fradinger E.A., Monien B.H., Urbanc B., Lomakin A., Tan M., Li H., et al., C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2008, 105, 14175–14180 CrossrefGoogle Scholar

  • [14] Doig A.J., Peptide inhibitors of β-amyloid aggregation, Curr. Opin. Drug Discov. Devel., 2007, 10, 533–539 Google Scholar

  • [15] Cheng P.N., Liu C., Zhao M., Eisenberg D., Nowick J.S., Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity, Nat. Chem., 2012, 4, 927–933 CrossrefGoogle Scholar

  • [16] van Groen T., Wiesehan K., Funke S.A., Kadish I., Nagel-Steger L., Willbold D., Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror image phage display, ChemMedChem, 2008, 3, 1848–1852 CrossrefGoogle Scholar

  • [17] Belluti F., Rampa A., Gobbi S., Bisi A., Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer’s disease—A patent review (2010–2012), Expert Opin. Ther. Pat., 2013 Google Scholar

  • [18] Re F., Airoldi C., Zona C., Masserini M., La Ferla B., Quattrocchi N., et al., β amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer’s disease, Curr. Med. Chem., 2010, 17, 2990–3006 CrossrefGoogle Scholar

  • [19] Roberts B.E., Shorter J., Escaping amyloid fate, Nat. Struct. Mol. Biol., 2008, 15, 544–546 CrossrefGoogle Scholar

  • [20] Wang W., Protein aggregation and its inhibition in biopharmaceutics, Int. J. Pharm., 2005, 289, 1–30 Google Scholar

  • [21] Bartolini M., Andrisano V., Strategies for the inhibition of protein aggregation in human diseases, ChemBioChem., 2010, 11, 1018–1035 CrossrefGoogle Scholar

  • [22] Bose M., Gestwicki J.E., Devasthali V., Crabtree G.R., Graef I.A., ‘Natureinspired’ drug-protein complexes as inhibitors of Aβ aggregation, Biochem. Soc. Trans., 2005, 33, 543–547 Google Scholar

  • [23] Cole G.M., Teter B., Frautschy S.A., Neuroprotective effects of curcumin, Adv. Exp. Med. Biol., 2007, 595, 197–212 Google Scholar

  • [24] Bastianetto S., Krantic S., Quirion R., Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer’s disease, Mini Rev. Med. Chem., 2008, 8, 429–435 CrossrefGoogle Scholar

  • [25] Porat Y., Abramowitz A., Gazit E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism, Chem. Biol. Drug Des., 2006, 67, 27–37 CrossrefGoogle Scholar

  • [26] Mandel S.A., Amit T., Weinreb O., Reznichenko L., Youdim M.B., Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases, CNS Neurosci. Ther., 2008, 14, 352–365 CrossrefGoogle Scholar

  • [27] Albani D., Polito L., Signorini A., Forloni G., Neuroprotective properties of resveratrol in different neurodegenerative disorders, BioFactors, 2010, 36, 370–376 CrossrefGoogle Scholar

  • [28] Cheng B., Liu X., Gong H., Huang L., Chen H., Zhang X., et al., Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus, J. Agric. Food Chem., 2011, 59, 13147–13155 CrossrefGoogle Scholar

  • [29] Huang Y., Jin M., Pi R., Zhang J., Chen M., Ouyang Y., et al., Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells, Neurosci. Lett., 2013, 535, 146–151 Google Scholar

  • [30] Mohamed T., Yeung J.C., Vasefi M.S., Beazely M.A., Rao P.P., Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template, Bioorg. Med. Chem. Lett., 2012, 22, 4707–4712 CrossrefGoogle Scholar

  • [31] Mao F., Huang L., Luo Z., Liu A., Lu C., Xie Z., et al., O-Hydroxyl-or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation, Bioorg. Med. Chem., 2012, 20, 5884–5892 CrossrefGoogle Scholar

  • [32] Pi R., Mao X., Chao X., Cheng Z., Liu M., Duan X., et al., Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo, PLoS One, 2012, 7, e31921 Google Scholar

  • [33] Bag S., Ghosh S., Tulsan R., Sood A., Zhou W., Schifone C., et al., Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer’s disease, Bioorg. Med. Chem. Lett., 2013 CrossrefGoogle Scholar

  • [34] Nunes A., Marques S.M., Quintanova C., Silva D.F., Cardoso S.M., Chaves S., et al., Multifunctional iron-chelators with protective roles against neurodegenerative diseases, Dalton Trans., 2013 CrossrefGoogle Scholar

  • [35] Telpoukhovskaia M.A., Patrick B.O., Rodriguez-Rodriguez C., Orvig C., Exploring the multifunctionality of thioflavin- and deferiprone-based molecules as acetylcholinesterase inhibitors for potential application in Alzheimer’s disease, Mol. Biosyst., 2013, 9, 792–805 CrossrefGoogle Scholar

  • [36] Török B., Sood A., Bag S., Tulsan R., Ghosh S., Borkin D., et al., Diaryl hydrazones as multifunctional inhibitors of amyloid self-assembly, Biochemistry, 2013, 52, 1137–1148 CrossrefGoogle Scholar

  • [37] Granzotto A., Zatta P., Resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties against Aβ and Aβ-metal complexes toxicity, PLoS One, 2011, 6, e21565 Google Scholar

  • [38] Stratton S.P., Bangert J.L., Alberts D.S., Dorr R.T., Dermal toxicity of topical (−)epigallocatechin-3-gallate in BALB/c and SKH1 mice, Cancer Lett., 2000, 158, 47–52 Google Scholar

  • [39] Miyamoto Y., Haylor J.L., El Nahas A.M., Cellular toxicity of catechin analogues containing gallate in opossum kidney proximal tubular (OK) cells, J. Toxicol. Sci., 2004, 29, 47–52 CrossrefGoogle Scholar

  • [40] Mak J.C., Potential role of green tea catechins in various disease therapies: progress and promise, Clin. Exp. Pharmacol. Physiol., 2012, 39, 265–273 CrossrefGoogle Scholar

  • [41] Balentine D.A., Wiseman S.A., Bouwens L.C., The chemistry of tea flavonoids, Crit. Rev. Food Sci. Nutr., 1997, 37, 693–704 CrossrefGoogle Scholar

  • [42] Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H., Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate, Cancer Res., 2006, 66, 2500–2505 CrossrefGoogle Scholar

  • [43] Ehrnhoefer D.E., Duennwald M., Markovic P., Wacker J.L., Engemann S., Roark M., et al., Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models, Hum. Mol. Genet., 2006, 15, 2743–2751 CrossrefGoogle Scholar

  • [44] Barranco Quintana J.L., Allam M.F., Del Castillo A.S., Navajas R.F., Parkinson’s disease and tea: a quantitative review, J. Am. Coll. Nutr., 2009, 28, 1–6 CrossrefGoogle Scholar

  • [45] Hellenbrand W., Seidler A., Boeing H., Robra B.P., Vieregge P., Nischan P., et al., Diet and Parkinson’s disease. I: A possible role for the past intake of specific foods and food groups. Results from a selfadministered food-frequency questionnaire in a case-control study, Neurology, 1996, 47, 636–643 CrossrefGoogle Scholar

  • [46] Ng T.P., Feng L., Niti M., Kua E.H., Yap K.B., Tea consumption and cognitive impairment and decline in older Chinese adults, Am. J. Clin. Nutr., 2008, 88, 224–231 Google Scholar

  • [47] Dragicevic N., Smith A., Lin X., Yuan F., Copes N., Delic V., et al., Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction, J. Alzheimers Dis., 2011, 26, 507–521 Google Scholar

  • [48] Fernandez J.W., Rezai-Zadeh K., Obregon D., Tan J., EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP, FEBS Lett., 2010, 584, 4259–4267 Google Scholar

  • [49] Lin C.L., Chen T.F., Chiu M.J., Way T.D., Lin J.K., Epigallocatechin gallate (EGCG) suppresses β-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 β activation, Neurobiol. Aging, 2009, 30, 81–92 CrossrefGoogle Scholar

  • [50] Mandel S.A., Amit T., Kalfon L., Reznichenko L., Weinreb O., Youdim M.B., Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG), J. Alzheimers Dis., 2008, 15, 211–222 Google Scholar

  • [51] Singh B.N., Shankar S., Srivastava R.K., Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications, Biochem. Pharmacol., 2011, 82, 1807–1821 CrossrefGoogle Scholar

  • [52] Smith A., Giunta B., Bickford P.C., Fountain M., Tan J., Shytle R.D., Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease, Int. J. Pharm., 2010, 389, 207–212 Google Scholar

  • [53] Ruidavets J., Teissedre P., Ferrieres J., Carando S., Bougard G., Cabanis J., Catechin in the Mediterranean diet: vegetable, fruit or wine?, Atherosclerosis, 2000, 153, 107–117 CrossrefGoogle Scholar

  • [54] Chyu K.Y., Babbidge S.M., Zhao X., Dandillaya R., Rietveld A.G., Yano J., et al., Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice, Circulation, 2004, 109, 2448–2453 CrossrefGoogle Scholar

  • [55] Katiyar S., Elmets C.A., Katiyar S.K., Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair, J. Nutr. Biochem., 2007, 18, 287–296 CrossrefGoogle Scholar

  • [56] Meng F., Abedini A., Plesner A., Verchere C.B., Raleigh D.P., The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity, Biochemistry, 2010, 49, 8127–8133 CrossrefGoogle Scholar

  • [57] Ehrnhoefer D.E., Bieschke J., Boeddrich A., Herbst M., Masino L., Lurz R., et al., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct. Mol. Biol., 2008, 15, 558–566 CrossrefGoogle Scholar

  • [58] Bieschke J., Russ J., Friedrich R.P., Ehrnhoefer D.E., Wobst H., Neugebauer K., et al., EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. USA, 2010, 107, 7710–7715 CrossrefGoogle Scholar

  • [59] Masuda M., Suzuki N., Taniguchi S., Oikawa T., Nonaka T., Iwatsubo T., et al., Small molecule inhibitors of α-synuclein filament assembly, Biochemistry, 2006, 45, 6085–6094 CrossrefGoogle Scholar

  • [60] Hauber I., Hohenberg H., Holstermann B., Hunstein W., Hauber J., The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection, Proc. Natl. Acad. Sci. USA, 2009, 106, 9033–9038 CrossrefGoogle Scholar

  • [61] Popovych N., Brender J.R., Soong R., Vivekanandan S., Hartman K., Basrur V., et al., Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248–286), J. Phys. Chem. B, 2012, 116, 3650–3658 Google Scholar

  • [62] Chandrashekaran I.R., Adda C.G., MacRaild C.A., Anders R.F., Norton R.S., Inhibition by flavonoids of amyloid-like fibril formation by Plasmodium falciparum merozoite surface protein 2, Biochemistry, 2010, 49, 5899–5908 CrossrefGoogle Scholar

  • [63] Chandrashekaran I.R., Adda C.G., Macraild C.A., Anders R.F., Norton R.S., EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2, Arch. Biochem. Biophys., 2011, 513, 153–157 Google Scholar

  • [64] Rambold A.S., Miesbauer M., Olschewski D., Seidel R., Riemer C., Smale L., et al., Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP, J. Neurochem., 2008, 107, 218–229 CrossrefGoogle Scholar

  • [65] Attar A., Bitan G., Disrupting Self-Assembly and Toxicity of Amyloidogenic Protein Oligomers by “Molecular Tweezers”-from the Test Tube to Animal Models, Curr. Pharm. Des., 2013, In press Google Scholar

  • [66] Klärner F.G., Schrader T., Aromatic interactions by molecular tweezers and clips in chemical and biological systems, Acc. Chem. Res., 2013, 46, 967–978 CrossrefGoogle Scholar

  • [67] Fokkens M., Schrader T., Klärner F.G., A molecular tweezer for lysine and arginine, J. Am. Chem. Soc., 2005, 127, 14415–14421 CrossrefGoogle Scholar

  • [68] Talbiersky P., Bastkowski F., Klärner F.G., Schrader T., Molecular clip and tweezer introduce new mechanisms of enzyme inhibition, J. Am. Chem. Soc., 2008, 130, 9824–9828 CrossrefGoogle Scholar

  • [69] Sinha S., Lopes D.H., Du Z., Pang E.S., Shanmugam A., Lomakin A., et al., Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins, J. Am. Chem. Soc., 2011, 133, 16958–16969 CrossrefGoogle Scholar

  • [70] Bier D., Rose R., Bravo-Rodriguez K., Bartel M., Ramirez-Anguita J.M., Dutt S., et al., Molecular tweezers modulate 14-3-3 protein-protein interactions, Nat. Chem., 2013, 5, 234–239 Google Scholar

  • [71] Attar A., Ripoli C., Riccardi E., Maiti P., Li Puma D.D., Liu T., et al., Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers, Brain, 2012, 135, 3735–3748 CrossrefGoogle Scholar

  • [72] Prabhudesai S., Sinha S., Attar A., Kotagiri A., Fitzmaurice A.G., Lakshmanan R., et al., A novel “molecular tweezer” inhibitor of α-synuclein neurotoxicity in vitro and in vivo, Neurotherapeutics, 2012, 9, 464–476 CrossrefGoogle Scholar

  • [73] Glenner G.G., Wong C.W., Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun., 1984, 120, 885–890 CrossrefGoogle Scholar

  • [74] Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K., Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, 4245–4249 CrossrefGoogle Scholar

  • [75] Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356. CrossrefGoogle Scholar

  • [76] Bastianetto S., Yao Z.X., Papadopoulos V., Quirion R., Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity, Eur. J. Neurosci., 2006, 23, 55–64 CrossrefGoogle Scholar

  • [77] LeVine H., 3rd, Quantification of β-sheet amyloid fibril structures with thioflavin T., Methods Enzymol., 1999, 309, 274–284 Google Scholar

  • [78] Palhano F.L., Lee J., Grimster N.P., Kelly J.W., Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils, J. Am. Chem. Soc., 2013, 135, 7503–7510 CrossrefGoogle Scholar

  • [79] Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, 416, 535–539 Google Scholar

  • [80] Reed M.N., Hofmeister J.J., Jungbauer L., Welzel A.T., Yu C., Sherman M.A., et al., Cognitive effects of cell-derived and synthetically derived Aβ oligomers, Neurobiol. Aging, 2011, 32, 1784–1794 CrossrefGoogle Scholar

  • [81] O’Nuallain B., Freir D.B., Nicoll A.J., Risse E., Ferguson N., Herron C.E., et al., Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils, J. Neurosci., 2010, 30, 14411–14419 CrossrefGoogle Scholar

  • [82] Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W., et al., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, 2003, 300, 486–489 Google Scholar

  • [83] Paz M.A., Flückiger R., Boak A., Kagan H.M., Gallop P.M., Specific detection of quinoproteins by redox-cycling staining, J. Biol. Chem., 1991, 266, 689–692 Google Scholar

  • [84] Lopez del Amo J.M., Fink U., Dasari M., Grelle G., Wanker E.E., Bieschke J., et al., Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers, J. Mol. Biol., 2012, 421, 517–524 Google Scholar

  • [85] Bitan G., Kirkitadze M.D., Lomakin A., Vollers S.S., Benedek G.B., Teplow D.B., Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways, Proc. Natl. Acad. Sci. USA, 2003, 100, 330–335 CrossrefGoogle Scholar

  • [86] Hoshi M., Sato M., Matsumoto S., Noguchi A., Yasutake K., Yoshida N., et al., Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β, Proc. Natl. Acad. Sci. USA, 2003, 100, 6370–6375 CrossrefGoogle Scholar

  • [87] Dahlgren K.N., Manelli A.M., Stine W.B., Jr., Baker L.K., Krafft G.A., LaDu M.J., Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability, J. Biol. Chem., 2002, 277, 32046–32053 CrossrefGoogle Scholar

  • [88] Harper J.D., Lansbury P.T., Jr., Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Annu. Rev. Biochem, 1997, 66, 385–407 CrossrefGoogle Scholar

  • [89] Petkova A.T., Ishii Y., Balbach J.J., Antzutkin O.N., Leapman R.D., Delaglio F., et al., A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA, 2002, 99, 16742–16747 CrossrefGoogle Scholar

  • [90] Petkova A.T., Yau W.M., Tycko R., Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils, Biochemistry, 2006, 45, 498–512 CrossrefGoogle Scholar

  • [91] Lazo N.D., Grant M.A., Condron M.C., Rigby A.C., Teplow D.B., On the nucleation of amyloid β-protein monomer folding, Protein Sci., 2005, 14, 1581–1596 Google Scholar

  • [92] Yu L., Edalji R., Harlan J.E., Holzman T.F., Lopez A.P., Labkovsky B., et al., Structural characterization of a soluble amyloid β-peptide oligomer, Biochemistry, 2009, 48, 1870–1877 CrossrefGoogle Scholar

  • [93] Wang S.H., Liu F.F., Dong X.Y., Sun Y., Thermodynamic analysis of the molecular interactions between amyloid β-peptide 42 and (−)-epigallocatechin-3-gallate, J. Phys. Chem. B, 2010, 114, 11576–11583 CrossrefGoogle Scholar

  • [94] Wang S.H., Dong X.Y., Sun Y., Thermodynamic analysis of the molecular interactions between amyloid β-protein fragments and (−)-epigallocatechin-3-gallate, J. Phys. Chem. B, 2012, 116, 5803–5809 CrossrefGoogle Scholar

  • [95] Hane F., Tran G., Attwood S.J., Leonenko Z., Cu2+ affects amyloid-β (1–42) aggregation by increasing peptide-peptide binding forces, PLoS One, 2013, 8, e59005 Google Scholar

  • [96] Solomonov I., Korkotian E., Born B., Feldman Y., Bitler A., Rahimi F., et al., Zn2+-Aβ40 complexes form metastable quasi-spherical oligomers that are cytotoxic to cultured hippocampal neurons, J. Biol. Chem., 2012, 287, 20555–20564 CrossrefGoogle Scholar

  • [97] Mancino A.M., Hindo S.S., Kochi A., Lim M.H., Effects of clioquinol on metal-triggered amyloid-β aggregation revisited, Inorg. Chem., 2009, 48, 9596–9598 CrossrefGoogle Scholar

  • [98] Bush A.I., Masters C.L., Tanzi R.E., Copper, β-amyloid, and Alzheimer’s disease: Tapping a sensitive connection, Proc. Natl. Acad. Sci. USA, 2003, 100, 11193–11194 CrossrefGoogle Scholar

  • [99] Huang X., Moir R.D., Tanzi R.E., Bush A.I., Rogers J.T., Redox-active metals, oxidative stress, and Alzheimer’s disease pathology, Ann. N. Y. Acad. Sci., 2004, 1012, 153–163 Google Scholar

  • [100] Pirker K.F., Baratto M.C., Basosi R., Goodman B.A., Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid, J. Inorg. Biochem., 2012, 112, 10–16 CrossrefGoogle Scholar

  • [101] Sun S.L., He G.Q., Yu H.N., Yang J.G., Borthakur D., Zhang L.C., et al., Free Zn2+ enhances inhibitory effects of EGCG on the growth of PC-3 cells, Mol. Nutr. Food Res., 2008, 52, 465–471 CrossrefGoogle Scholar

  • [102] Weinreb O., Amit T., Mandel S., Youdim M.B., Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties, Genes Nutr. 2009, 4, 283–296 CrossrefGoogle Scholar

  • [103] Seeram N.P., Henning S.M., Niu Y., Lee R., Scheuller H.S., Heber D., Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity, J. Agric. Food Chem., 2006, 54, 1599–1603 CrossrefGoogle Scholar

  • [104] Zhang Y., Jiang T., Zheng Y., Zhou P., Interference of EGCG on the Zn(II)-induced conformational transition of silk fibroin as a model protein related to neurodegenerative diseases, Soft Matter, 2012, 8, 5543–5549 Google Scholar

  • [105] Cheng X.R., Hau B.Y., Veloso A.J., Martic S., Kraatz H.B., Kerman K., Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals, Anal. Chem., 2013, 85, 2049–2055 CrossrefGoogle Scholar

  • [106] Hyung S.J., DeToma A.S., Brender J.R., Lee S., Vivekanandan S., Kochi A., et al., Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species, Proc. Natl. Acad. Sci. USA, 2013, 110, 3743–3748 CrossrefGoogle Scholar

  • [107] Sinha S., Du Z., Maiti P., Klärner F.G., Schrader T., Wang C., et al., Comparison of three amyloid assembly inhibitors: the sugar scylloinositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01, ACS Chem. Neurosci., 2012, 3, 451–458 CrossrefGoogle Scholar

  • [108] Miyai S., Yamaguchi A., Iwasaki T., Shamsa F., Ohtsuki K., Biochemical characterization of epigallocatechin-3-gallate as an effective stimulator for the phosphorylation of its binding proteins by glycogen synthase kinase-3β in vitro, Biol. Pharm. Bull., 2010, 33, 1932–1937 Google Scholar

  • [109] Takashima A., The Mechanism of tau aggregation and its relation to neuronal dysfunction, Alzheimer’s Association Interantional Conference on Alzheimer’s disease, 2010, S144, Abstract No. PL-104-103. Google Scholar

  • [110] Frost B., Ollesch J., Wille H., Diamond M.I., Conformational diversity of wild-type Tau fibrils specified by templated conformation change, J. Biol. Chem., 2009, 284, 3546–3551 CrossrefGoogle Scholar

  • [111] Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., et al., Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice, Science, 1996, 274, 99–102 CrossrefGoogle Scholar

  • [112] Rezai-Zadeh K., Shytle D., Sun N., Mori T., Hou H., Jeanniton D., et al., Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice, J. Neurosci., 2005, 25, 8807–8814 CrossrefGoogle Scholar

  • [113] Rezai-Zadeh K., Arendash G.W., Hou H., Fernandez F., Jensen M., Runfeldt M., et al., Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice, Brain Res., 2008, 1214, 177–187 Google Scholar

  • [114] Hwang D.Y., Chae K.R., Kang T.S., Hwang J.H., Lim C.H., Kang H.K., et al., Alterations in behavior, amyloid β-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease, FASEB J., 2002, 16, 805–813 Google Scholar

  • [115] Lee J.W., Lee Y.K., Ban J.O., Ha T.Y., Yun Y.P., Han S.B., et al., Green tea (−)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice, J. Nutr., 2009, 139, 1987–1993 CrossrefGoogle Scholar

  • [116] Lee S.Y., Lee J.W., Lee H., Yoo H.S., Yun Y.P., Oh K.W., et al., Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms, Brain Res. Mol. Brain Res., 2005, 140, 45–54 CrossrefGoogle Scholar

  • [117] Rasoolijazi H., Joghataie M.T., Roghani M., Nobakht M., The beneficial effect of (−)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a behavioral analysis, Iran Biomed. J., 2007, 11, 237–243 Google Scholar

  • [118] Lee Y.K., Yuk D.Y., Lee J.W., Lee S.Y., Ha T.Y., Oh K.W., et al., (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of β-amyloid generation and memory deficiency, Brain Res., 2009, 1250, 164–174 Google Scholar

  • [119] Lee Y.J., Choi D.Y., Yun Y.P., Han S.B., Oh K.W., Hong J.T., Epigallocatechin-3-gallate prevents systemic inflammationinduced memory deficiency and amyloidogenesis via its antineuroinflammatory properties, J. Nutr. Biochem., 2013, 24, 298–310 Google Scholar

  • [120] Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R., et al., β-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes, Neurobiol. Aging, 2006, 27, 228–236 CrossrefGoogle Scholar

  • [121] Link C.D., Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 1995, 92, 9368–9372 CrossrefGoogle Scholar

  • [122] Abbas S., Wink M., Epigallocatechin gallate inhibits β amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/ insulin-like signaling pathway, Phytomedicine, 2010, 17, 902–909 CrossrefGoogle Scholar

  • [123] Bitan G., Fradinger E.A., Spring S.M., Teplow D.B., Neurotoxic protein oligomers—what you see is not always what you get, Amyloid, 2005, 12, 88–95 CrossrefGoogle Scholar

  • [124] Hepler R.W., Grimm K.M., Nahas D.D., Breese R., Dodson E.C., Acton P., et al., Solution state characterization of amyloid β-derived diffusible ligands, Biochemistry, 2006, 45, 15157–15167 CrossrefGoogle Scholar

  • [125] Khan J.M., Qadeer A., Chaturvedi S.K., Ahmad E., Rehman S.A., Gourinath S., et al., SDS can be utilized as an amyloid inducer: a case study on diverse proteins, PLoS One, 2012, 7, e29694 Google Scholar

  • [126] Watt A.D., Perez K.A., Rembach A., Sherrat N.A., Hung L.W., Johanssen T., et al., Oligomers, fact or artefact? SDS-PAGE induces dimerization of β-amyloid in human brain samples, Acta Neuropathol. (Berl). 2013 CrossrefGoogle Scholar

  • [127] Jankowsky J.L., Fadale D.J., Anderson J., Xu G.M., Gonzales V., Jenkins N.A., et al., Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase, Hum. Mol. Genet., 2004, 13, 159–170 Google Scholar

  • [128] Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., et al., Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction, Neuron, 2003, 39, 409–421 CrossrefGoogle Scholar

  • [129] George J.M., Jin H., Woods W.S., Clayton D.F., Characterization of a novel protein regulated during the critical period for song learning in the zebra finch, Neuron, 1995, 15, 361–372 CrossrefGoogle Scholar

  • [130] Maroteaux L., Scheller R.H., The rat brain synucleins; family of proteins transiently associated with neuronal membrane, Brain Res. Mol. Brain Res., 1991, 11, 335–343 CrossrefGoogle Scholar

  • [131] Maroteaux L., Campanelli J.T., Scheller R.H., Synuclein: a neuronspecific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci., 1988, 8, 2804–2815 Google Scholar

  • [132] Bendor J.T., Logan T.P., Edwards R.H., The function of α-synuclein, Neuron, 2013, 79, 1044–1066 CrossrefGoogle Scholar

  • [133] El-Agnaf O.M.A., Jakes R., Curran M.D., Middleton D., Ingenito R., Bianchi E., et al., Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments, FEBS Lett., 1998, 440, 71–75 Google Scholar

  • [134] Acharya S., Safaie B., Wongkongkathep P., Ivanova M.I., Attar A., Klärner F.-G., et al., Molecular basis for preventing α-synuclein aggregation by a molecular tweezer, 2013, Submitted for publication Google Scholar

  • [135] Ng C.H., Mok S.Z., Koh C., Ouyang X., Fivaz M.L., Tan E.K., et al., Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila, J. Neurosci., 2009, 29, 11257–11262 CrossrefGoogle Scholar

  • [136] Wang C., Lu R., Ouyang X., Ho M.W., Chia W., Yu F., et al., Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities, J. Neurosci., 2007, 27, 8563–8570 CrossrefGoogle Scholar

  • [137] Ng C.H., Guan M.S., Koh C., Ouyang X., Yu F., Tan E.K., et al., AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease, J. Neurosci., 2012, 32, 14311–14317 CrossrefGoogle Scholar

  • [138] Bonilla-Ramirez L., Jimenez-Del-Rio M., Velez-Pardo C., Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile Parkinsonism, Gene, 2013, 512, 355–363 Google Scholar

  • [139] Choi J.Y., Park C.S., Kim D.J., Cho M.H., Jin B.K., Pie J.E., et al., Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate, Neurotoxicology, 2002, 23, 367–374 Google Scholar

  • [140] Kim J.S., Kim J.M., O J.J., Jeon B.S., Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease, J. Clin. Neurosci., 2010, 17, 1165–1168 Google Scholar

  • [141] Reznichenko L., Kalfon L., Amit T., Youdim M.B., Mandel S.A., Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced parkinsonism, Neurodegener. Dis., 2010, 7, 219–231 CrossrefGoogle Scholar

  • [142] Youdim M.B., Grunblatt E., Levites Y., Maor G., Mandel S., Early and late molecular events in neurodegeneration and neuroprotection in Parkinson’s disease MPTP model as assessed by cDNA microarray; the role of iron, Neurotox. Res., 2002, 4, 679–689 CrossrefGoogle Scholar

  • [143] Leaver K.R., Allbutt H.N., Creber N.J., Kassiou M., Henderson J.M., Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection, Brain Res. Bull., 2009, 80, 397–402 CrossrefGoogle Scholar

  • [144] Kang K.S., Wen Y., Yamabe N., Fukui M., Bishop S.C., Zhu B.T., Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies, PLoS One, 2010, 5, e11951 Google Scholar

  • [145] Emmanouilidou E., Stefanis L., Vekrellis K., Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome, Neurobiol. Aging, 2010, 31, 953–968 CrossrefGoogle Scholar

  • [146] Zhang N.Y., Tang Z., Liu C.W., α-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis, J. Biol. Chem., 2008, 283, 20288–20298 Google Scholar

  • [147] Lulla A., Barnhill L., Stahl M., Fitzmaurice A.G., Li S., Bronstein J.M., Neurotoxicity of the dithiocarbamate fungicide ziram is dependent on synuclein in zebrafish: Implications for Parkinson’s disease, Society of Toxicology Annual Meeting, 2013, Abstract #1407. Google Scholar

  • [148] Wang X.F., Li S., Chou A.P., Bronstein J.M., Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease, Neurobiol. Dis., 2006, 23, 198–205 CrossrefGoogle Scholar

  • [149] Zhou Y., Shie F.S., Piccardo P., Montine T.J., Zhang J., Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease, Neuroscience, 2004, 128, 281–291 CrossrefGoogle Scholar

  • [150] Chou A.P., Maidment N., Klintenberg R., Casida J.E., Li S., Fitzmaurice A.G., et al., Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome, J. Biol. Chem., 2008, 283, 34696–34703 Google Scholar

  • [151] Wang A., Costello S., Cockburn M., Zhang X., Bronstein J., Ritz B., Parkinson’s disease risk from ambient exposure to pesticides, Eur. J. Epidemiol., 2011, 26, 547–555 CrossrefGoogle Scholar

  • [152] Rinetti G.V., Schweizer F.E., Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons, J. Neurosci., 2010, 30, 3157–3166 CrossrefGoogle Scholar

  • [153] Saraiva M., Cardoso I., Transthyretin Aggregation and Toxicity, In: Rahimi F., Bitan G. (Eds.), Non-fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases, Springer Netherlands, 2012 Google Scholar

  • [154] Westermark P., Senile systemic amyloidosis — An overview, Amyloid, 2001, 8, 121 Google Scholar

  • [155] Ferreira N., Cardoso I., Domingues M.R., Vitorino R., Bastos M., Bai G., et al., Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity, FEBS Lett., 2009, 583, 3569–3576 Google Scholar

  • [156] Miyata M., Sato T., Kugimiya M., Sho M., Nakamura T., Ikemizu S., et al., The crystal structure of the green tea polyphenol (−)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site, Biochemistry, 2010, 49, 6104–6114 CrossrefGoogle Scholar

  • [157] Kristen A.V., Lehrke S., Buss S., Mereles D., Steen H., Ehlermann P., et al., Green tea halts progression of cardiac transthyretin amyloidosis: an observational report, Clin. Res. Cardiol., 2012, 101, 805–813 CrossrefGoogle Scholar

  • [158] Kristen A.V., Perz J.B., Schonland S.O., Hegenbart U., Schnabel P.A., Kristen J.H., et al., Non-invasive predictors of survival in cardiac amyloidosis, Eur. J. Heart Fail., 2007, 9, 617–624 CrossrefGoogle Scholar

  • [159] Mörner S., Hellman U., Suhr O.B., Kazzam E., Waldenstrom A., Amyloid heart disease mimicking hypertrophic cardiomyopathy, J. Intern. Med., 2005, 258, 225–230 CrossrefGoogle Scholar

  • [160] Ferreira N., Saraiva M.J., Almeida M.R., Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models, PLoS One, 2012, 7, e29933 Google Scholar

  • [161] Santos S.D., Fernandes R., Saraiva M.J., The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems, Neurobiol. Aging, 2010, 31, 280–289 CrossrefGoogle Scholar

  • [162] Ferreira N., Pereira-Henriques A., Attar A., Klärner F.-G., Schrader T., Bitan G., et al., Molecular Tweezers Targeting Transthyretin Amyloidosis, 2013, Submitted for publication Google Scholar

  • [163] Westermark P., Wernstedt C., Wilander E., Hayden D.W., O’Brien T.D., Johnson K.H., Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells, Proc. Natl. Acad. Sci. USA, 1987, 84, 3881–3885 CrossrefGoogle Scholar

  • [164] Cooper G.J., Willis A.C., Clark A., Turner R.C., Sim R.B., Reid K.B., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients, Proc. Natl. Acad. Sci. USA, 1987, 84, 8628–8632 CrossrefGoogle Scholar

  • [165] Kahn S.E., Andrikopoulos S., Verchere C.B., Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes, Diabetes, 1999, 48, 241–253 CrossrefGoogle Scholar

  • [166] Clark A., Cooper G.J., Lewis C.E., Morris J.F., Willis A.C., Reid K.B., et al., Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes, Lancet, 1987, 2, 231–234 CrossrefGoogle Scholar

  • [167] Hull R.L., Westermark G.T., Westermark P., Kahn S.E., Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes, J. Clin. Endocrinol. Metab., 2004, 89, 3629–3643 CrossrefGoogle Scholar

  • [168] Lorenzo A., Razzaboni B., Weir G.C., Yankner B.A., Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus, Nature, 1994, 368, 756–760 CrossrefGoogle Scholar

  • [169] Clark A., Wells C.A., Buley I.D., Cruickshank J.K., Vanhegan R.I., Matthews D.R., et al., Islet amyloid, increased a-cells, reduced b-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes, Diabetes Res., 1988, 9, 151–159 Google Scholar

  • [170] Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C., β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes, Diabetes, 2003, 52, 102–110 CrossrefGoogle Scholar

  • [171] Bahramikia S., Yazdanparast R., Inhibition of human islet amyloid polypeptide or amylin aggregation by two manganese-salen derivatives, Eur. J. Pharmacol., 2013, 707, 17–25 Google Scholar

  • [172] Cheng B., Gong H., Li X., Sun Y., Chen H., Zhang X., et al., Salvianolic acid B inhibits the amyloid formation of human islet amyloid polypeptideand protects pancreatic β-cells against cytotoxicity, Proteins, 2013, 81, 613–621 CrossrefGoogle Scholar

  • [173] Cheng B., Gong H., Li X., Sun Y., Zhang X., Chen H., et al., Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide, Biochem. Biophys. Res. Commun., 2012, 419, 495–499 Google Scholar

  • [174] Hagihara M., Takei A., Ishii T., Hayashi F., Kubota K., Wakamatsu K., et al., Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide, FEBS open bio, 2012, 2, 20–25 Google Scholar

  • [175] Seeliger J., Winter R., Islet amyloid polypeptide: Aggregation and fibrillogenesis in vitro and its inhibition, Subcell. Biochem., 2012, 65, 185–209 CrossrefGoogle Scholar

  • [176] Engel M.F., vandenAkker C.C., Schleeger M., Velikov K.P., Koenderink G.H., Bonn M., The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution, J. Am. Chem. Soc., 2012, 134, 14781–14788 CrossrefGoogle Scholar

  • [177] Fu L., Ma G., Yan E.C., In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation, J. Am. Chem. Soc., 2010, 132, 5405–5412 CrossrefGoogle Scholar

  • [178] Fu L., Liu J., Yan E.C., Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces, J. Am. Chem. Soc., 2011, 133, 8094–8097 CrossrefGoogle Scholar

  • [179] Suzuki Y., Brender J.R., Hartman K., Ramamoorthy A., Marsh E.N., Alternative pathways of human islet amyloid polypeptide aggregation distinguished by 19F nuclear magnetic resonancedetected kinetics of monomer consumption, Biochemistry, 2012, 51, 8154–8162 CrossrefGoogle Scholar

  • [180] Lopes D.H.J., Attar A., Du Z., McDaniel K., Dutt S., Bravo-Rodriguez K., et al., The molecular tweezer CLR01 inhibits islet amyloid polypeptide assembly and toxicity via an unexpected mechanism, 2013, Submitted for publication Google Scholar

  • [181] Sexton P.M., Findlay D.M., Martin T.J., Calcitonin, Curr. Med. Chem., 1999, 6, 1067–1093 Google Scholar

  • [182] Copp D.H., Calcitonin: discovery, development, and clinical application, Clin. Invest. Med., 1994, 17, 268–277 Google Scholar

  • [183] Huang C.L., Sun L., Moonga B.S., Zaidi M., Molecular physiology and pharmacology of calcitonin, Cellular and molecular biology (Noisyle-Grand, France), 2006, 52, 33–43 Google Scholar

  • [184] Foster G.V., Calcitonin (thyrocalcitonin), N. Engl. J. Med., 1968, 279, 349–360 Google Scholar

  • [185] Haymovits A., Rosen J.F., Calcitonin in metabolic disorders, Adv. Metab. Disord., 1972, 60, 177–212 CrossrefGoogle Scholar

  • [186] Huang R., Vivekanandan S., Brender J.R., Abe Y., Naito A., Ramamoorthy A., NMR characterization of monomeric and oligomeric conformations of human calcitonin and its interaction with EGCG, J. Mol. Biol., 2012, 416, 108–120 Google Scholar

  • [187] Molinari M., Watt K.D., Kruszyna T., Nelson R., Walsh M., Huang W.Y., et al., Acute liver failure induced by green tea extracts: case report and review of the literature, Liver Transpl., 2006, 12, 1892–1895 CrossrefGoogle Scholar

  • [188] Isbrucker R.A., Bausch J., Edwards J.A., Wolz E., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: genotoxicity, Food Chem. Toxicol., 2006, 44, 626–635 Google Scholar

  • [189] Isbrucker R.A., Edwards J.A., Wolz E., Davidovich A., Bausch J., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats, Food Chem. Toxicol., 2006, 44, 651–661 CrossrefGoogle Scholar

  • [190] Isbrucker R.A., Edwards J.A., Wolz E., Davidovich A., Bausch J., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies, Food Chem. Toxicol., 2006, 44, 636–650 Google Scholar

  • [191] Lambert J.D., Kennett M.J., Sang S., Reuhl K.R., Ju J., Yang C.S., Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice, Food Chem. Toxicol., 2010, 48, 409–416 CrossrefGoogle Scholar

  • [192] Goodin M.G., Rosengren R.J., Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse, Toxicol. Sci., 2003, 76, 262–270 CrossrefGoogle Scholar

  • [193] Kapetanovic I.M., Crowell J.A., Krishnaraj R., Zakharov A., Lindeblad M., Lyubimov A., Exposure and toxicity of green tea polyphenols in fasted and non-fasted dogs, Toxicology, 2009, 260, 28–36 Google Scholar

  • [194] Guengerich F.P., Cytochrome p450 and chemical toxicology, Chem. Res. Toxicol., 2008, 21, 70–83 CrossrefGoogle Scholar

  • [195] Huynh H.T., Teel R.W., Effects of plant-derived phenols on rat liver cytochrome P450 2B1 activity, Anticancer Res., 2002, 22, 1699–1703 Google Scholar

  • [196] Ullmann U., Haller J., Decourt J.P., Girault N., Girault J., Richard-Caudron A.S., et al., A single ascending dose study of epigallocatechin gallate in healthy volunteers, J. Int. Med. Res., 2003, 31, 88–101 CrossrefGoogle Scholar

  • [197] Chow H.H., Hakim I.A., Vining D.R., Crowell J.A., Ranger-Moore J., Chew W.M., et al., Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals, Clin. Cancer Res., 2005, 11, 4627–4633 CrossrefGoogle Scholar

  • [198] Ullmann U., Haller J., Decourt J.D., Girault J., Spitzer V., Weber P., Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Int. J. Vitam. Nutr. Res., 2004, 74, 269–278 Google Scholar

  • [199] Chow H.H., Cai Y., Hakim I.A., Crowell J.A., Shahi F., Brooks C.A., et al., Pharmacokinetics and safety of green tea polyphenols after multipledose administration of epigallocatechin gallate and polyphenon E in healthy individuals, Clin. Cancer Res., 2003, 9, 3312–3319 Google Scholar

  • [200] Hsu C.H., Liao Y.L., Lin S.C., Tsai T.H., Huang C.J., Chou P., Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebocontrolled clinical trial, Altern. Med. Rev., 2011, 16, 157–163 Google Scholar

  • [201] Jimenez-Saenz M., Martinez-Sanchez Mdel C., Acute hepatitis associated with the use of green tea infusions, J. Hepatol., 2006, 44, 616–617 CrossrefGoogle Scholar

  • [202] Crew K.D., Brown P., Greenlee H., Bevers T.B., Arun B., Hudis C., et al., Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer, Cancer Prev. Res., 2012, 5, 1144–1154 CrossrefGoogle Scholar

  • [203] Bonkovsky H.L., Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis), Ann. Intern. Med., 2006, 144, 68–71 CrossrefGoogle Scholar

  • [204] Mazzanti G., Menniti-Ippolito F., Moro P.A., Cassetti F., Raschetti R., Santuccio C., et al., Hepatotoxicity from green tea: a review of the literature and two unpublished cases, Eur. J. Clin. Pharmacol., 2009, 65, 331–341 CrossrefGoogle Scholar

  • [205] Attar A., Chan W.-T.C., Klärner F.-G., Schrader T., Bitan G., Safety and pharmacokinetic characterization of the molecular tweezer CLR01 in vivo, 2013, Manuscript in preparation Google Scholar

  • [206] Obach R.S., Walsky R.L., Venkatakrishnan K., Gaman E.A., Houston J.B., Tremaine L.M., The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions, J. Pharmacol. Exp. Ther., 2006, 316, 336–348 Google Scholar

  • [207] Williamson G., Dionisi F., Renouf M., Flavanols from green tea and phenolic acids from coffee: critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages, Mol. Nutr. Food Res., 2011, 55, 864–873 CrossrefGoogle Scholar

  • [208] Yang C.S., Chen L., Lee M.J., Balentine D., Kuo M.C., Schantz S.P., Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers, Cancer Epidemiol. Biomarkers Prev., 1998, 7, 351–354 Google Scholar

  • [209] Chow H.H., Cai Y., Alberts D.S., Hakim I., Dorr R., Shahi F., et al., Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E, Cancer Epidemiol. Biomarkers Prev., 2001, 10, 53–58 Google Scholar

  • [210] Renouf M., Guy P., Marmet C., Longet K., Fraering A.L., Moulin J., et al., Plasma appearance and correlation between coffee and green tea metabolites in human subjects, Br. J. Nutr., 2010, 104, 1635–1640 CrossrefGoogle Scholar

  • [211] Van Amelsvoort J.M., Van Hof K.H., Mathot J.N., Mulder T.P., Wiersma A., Tijburg L.B., Plasma concentrations of individual tea catechins after a single oral dose in humans, Xenobiotica, 2001, 31, 891–901 CrossrefGoogle Scholar

  • [212] Lee M.J., Wang Z.Y., Li H., Chen L., Sun Y., Gobbo S., et al., Analysis of plasma and urinary tea polyphenols in human subjects, Cancer Epidemiol. Biomarkers Prev., 1995, 4, 393–399 Google Scholar

  • [213] Mateos R., Goya L., Bravo L., Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver, J. Agric. Food Chem., 2006, 54, 8724–8732 CrossrefGoogle Scholar

  • [214] Meng X., Sang S., Zhu N., Lu H., Sheng S., Lee M.J., et al., Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats, Chem. Res. Toxicol., 2002, 15, 1042–1050 CrossrefGoogle Scholar

  • [215] Walle T., Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption, Mol. Pharm., 2007, 4, 826–832 CrossrefGoogle Scholar

  • [216] Maeda-Yamamoto M., Ema K., Monobe M., Tokuda Y., Tachibana H., Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release, J. Agric. Food Chem., 2012, 60, 2165–2170 Google Scholar

  • [217] Harada M., Kan Y., Naoki H., Fukui Y., Kageyama N., Nakai M., et al., Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (−)-epicatechin, Biosci. Biotechnol. Biochem., 1999, 63, 973–977 CrossrefGoogle Scholar

  • [218] Giunta B., Hou H., Zhu Y., Salemi J., Ruscin A., Shytle R.D., et al., Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice, Neurosci. Lett., 2010, 471, 134–138 Google Scholar

  • [219] Sang S., Lee M.J., Hou Z., Ho C.T., Yang C.S., Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions, J. Agric. Food Chem., 2005, 53, 9478–9484 CrossrefGoogle Scholar

  • [220] Ishii T., Mori T., Tanaka T., Mizuno D., Yamaji R., Kumazawa S., et al., Covalent modification of proteins by green tea polyphenol (−)-epigallocatechin-3-gallate through autoxidation, Free Radic. Biol. Med., 2008, 45, 1384–1394 Google Scholar

  • [221] Sato M., Murakami K., Uno M., Nakagawa Y., Katayama S., Akagi K.I., et al., Site-specific inhibitory mechanism for amyloid-β42 aggregation by catechol-type flavonoids targeting the Lys residues, J. Biol. Chem., 2013 CrossrefGoogle Scholar

  • [222] Okada K., Wangpoengtrakul C., Osawa T., Toyokuni S., Tanaka K., Uchida K., 4-hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress — Identification of proteasomes as target molecules, J. Biol. Chem., 1999, 274, 23787–23793 Google Scholar

  • [223] Qin Z., Hu D., Han S., Reaney S.H., Di Monte D.A., Fink A.L., Effect of 4-hydroxy-2-nonenal modification on α-synuclein aggregation, J. Biol. Chem., 2007, 282, 5862–5870 Google Scholar

  • [224] Perez M., Cuadros R., Smith M.A., Perry G., Avila J., Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal, FEBS Lett., 2000, 486, 270–274 Google Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2013-12-01


Citation Information: Translational Neuroscience, Volume 4, Issue 4, Pages 385–409, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0137-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kayla M. Pate, Brandon J. Kim, Eric V. Shusta, and Regina M. Murphy
ChemMedChem, 2018
[3]
Juan Zhao, Qingnan Liang, Qing Sun, Congheng Chen, Lihui Xu, Yu Ding, and Ping Zhou
RSC Adv., 2017, Volume 7, Number 52, Page 32508
[4]
Thomas Schrader, Gal Bitan, and Frank-Gerrit Klärner
Chem. Commun., 2016, Volume 52, Number 76, Page 11318
[5]
Gabriella Ortore, Elisabetta Orlandini, Alessandra Braca, Lidia Ciccone, Armando Rossello, Adriano Martinelli, and Susanna Nencetti
ChemMedChem, 2016, Volume 11, Number 16, Page 1865
[6]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101
[7]
Ravit Malishev, Sukhendu Nandi, Sofiya Kolusheva, Yael Levi-Kalisman, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, and Raz Jelinek
ACS Chemical Neuroscience, 2015, Volume 6, Number 11, Page 1860
[8]
Yvonne S. Eisele, Cecilia Monteiro, Colleen Fearns, Sandra E. Encalada, R. Luke Wiseman, Evan T. Powers, and Jeffery W. Kelly
Nature Reviews Drug Discovery, 2015, Volume 14, Number 11, Page 759
[9]
Xueyun Zheng, Deyu Liu, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, and Michael T. Bowers
The Journal of Physical Chemistry B, 2015, Volume 119, Number 14, Page 4831
[10]
Benjamin Zealley and Aubrey D.N.J. de Grey
Rejuvenation Research, 2014, Volume 17, Number 3, Page 312

Comments (0)

Please log in or register to comment.
Log in