Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
See all formats and pricing
More options …

Memory consolidation — Mechanisms and opportunities for enhancement

Netasha Shaikh / Elizabeth Coulthard
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s13380-013-0140-3


Memory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.

Keywords: Alzheimer’s disease (AD); Dementia; Sleep; Exercise; Diet; Calorie restriction; Hippocampus; Neurogeneration; Acetylcholine; Dopamine

  • [1] Launer L.J., Andersen K., Dewey M.E., Letenneur L., Ott A., Amaducci L.A., et al., Rates and risk factors for dementia and Alzheimer’s disease — Results from EURODEM pooled analyses, Neurology, 1999, 52, 78–84 CrossrefGoogle Scholar

  • [2] Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278 CrossrefGoogle Scholar

  • [3] Schuff N., Woerner N., Boreta L., Kornfield T., Shaw L.M., Trojanowski J.Q., et al., MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers, Brain, 2009, 132, 1067–1077 Google Scholar

  • [4] McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269 CrossrefGoogle Scholar

  • [5] Vincent A., Buckley C., Schott J.M., Baker I., Dewar B.K., Detert N., et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, 2004, 127, 701–712 Google Scholar

  • [6] Spencer R.M.C., Gouw A.M., Ivry R.B., Age-related decline of sleepdependent consolidation, Learn. Mem., 2007, 14, 480–484 Google Scholar

  • [7] Buzsáki G., Two-stage model of memory trace formation — a role for “noisy” brain states, Neuroscience, 1989, 31, 551–570 CrossrefGoogle Scholar

  • [8] Rasch B., Born J., Maintaining memories by reactivation, Curr. Opin. Neurobiol., 2007, 17, 698–703 CrossrefGoogle Scholar

  • [9] Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training, Nat. Neurosci., 2000, 3, 1237–1238 CrossrefGoogle Scholar

  • [10] Fischer S., Hallschmid M., Elsner A.L., Born J., Sleep forms memory for finger skills, Proc. Natl. Acad. Sci. USA, 2002, 99, 11987–11991 CrossrefGoogle Scholar

  • [11] Rasch B., Buechel C., Gais S., Born J., Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 2007, 315, 1426–1429 Google Scholar

  • [12] Buzsáki G., Hippocampal sharp waves — their origin and significance, Brain Res., 1986, 398, 242–252 Google Scholar

  • [13] Behrens C.J., van den Boom L.P., de Hoz L., Friedman A., Heinemann U., Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks, Nat. Neurosci., 2005, 8, 1560–1567 CrossrefGoogle Scholar

  • [14] Sirota A., Csicsvari J., Buhl D., Buzsáki G., Communication between neocortex and hippocampus during sleep in rodents, Proc. Natl. Acad. Sci. USA, 2003, 100, 2065–2069 CrossrefGoogle Scholar

  • [15] Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci., 2007, 10, 100–107 CrossrefGoogle Scholar

  • [16] Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep, Nat. Neurosci., 2009, 12, 919–926 CrossrefGoogle Scholar

  • [17] Gauthier S., Scheltens P., Can we do better in developing new drugs for Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 489–491 CrossrefGoogle Scholar

  • [18] Bartus R.T., Dean R.L., Beer B., Lippa A.S., The cholinergic hypothesis of geriatric memory dysfunction, Science, 1982, 217, 408–417 Google Scholar

  • [19] Davies P., Maloney A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 1976, 2, 1403–1403 CrossrefGoogle Scholar

  • [20] Drachman D.A., Leavitt J., Human memory and cholinergic system — relationship to aging, Arch. Neurol., 1974, 30, 113–121 Google Scholar

  • [21] Ellis B.W., Johns M.W., Lancaster R., Raptopoulos P., Angelopoulos N., Priest R.G., The St. Mary’s Hospital sleep questionnaire: a study of reliability, Sleep, 1981, 4, 93–97 Google Scholar

  • [22] Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al., Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease, Arch. Neurol., 1997, 54, 465–473 Google Scholar

  • [23] Levey A.I., Immunological localization of m1-m5 muscarinic acetylcholine-receptors in peripheral-tissues and brain, Life Sci., 1993, 52, 441–448 CrossrefGoogle Scholar

  • [24] Roldán G., Bolaños-Badillo E., González-Sánchez H., Quirarte G.L., Prado-Alcalá R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats, Neurosci. Lett., 1997, 230, 93–96 Google Scholar

  • [25] Ferreira A.R., Fürstenau L., Blanco C., Kornisiuk E., Sánchez G., Daroit D., et al., Role of hippocampal M-1 and M-4 muscarinic receptor subtypes in memory consolidation in the rat, Pharmacol. Biochem. Behav., 2003, 74, 411–415 CrossrefGoogle Scholar

  • [26] Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., et al., Selective cognitive dysfunction in acetylcholine M-1 muscarinic receptor mutant mice, Nat. Neurosci., 2003, 6, 51–58 Google Scholar

  • [27] Nissen C., Power A.E., Noftinger E.A., Feige B., Voderholzer U., Kloepfer C., et al., M-1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation, J. Cogn. Neurosci., 2006, 18, 1799–1807 Google Scholar

  • [28] Foster N.L., Aldrich M.S., Bluemlein L., White R.F., Berent S., Failure of cholinergic agonist RS-86 to improve cognition and movement in PSP despite effects on sleep, Neurology, 1989, 39, 257–261 CrossrefGoogle Scholar

  • [29] Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al., A randomized trial of deep-brain stimulation for Parkinson’s disease, N. Engl. J. Med., 2006, 355, 896–908 Google Scholar

  • [30] Huys D., Möller M., Kim E.H., Hardenacke K., Huff W., Klosterkötter J., et al., Deep brain stimulation for psychiatric disorders: historical basis, Nervenarzt, 2012, 83, 1156–1168 CrossrefGoogle Scholar

  • [31] Laxton A.W., Tang-Wai D.F., McAndrews M.P., Zumsteg D., Wennberg R., Keren R., et al., A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s Disease, Ann. Neurol., 2010, 68, 521–534 CrossrefGoogle Scholar

  • [32] Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., et al., Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 2012, 366, 502–510 Google Scholar

  • [33] Bethus I., Tse D., Morris R.G.M., Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptordependent paired associates, J. Neurosci., 2010, 30, 1610–1618 CrossrefGoogle Scholar

  • [34] Chowdhury R., Guitart-Masip M., Bunzeck N., Dolan R.J., Düzel E., Dopamine modulates episodic memory persistence in old age, J. Neurosci., 2012, 32, 14193–14204 CrossrefGoogle Scholar

  • [35] Coulthard E.J., Bogacz R., Javed S., Mooney L.K., Murphy G., Keeley S., et al., Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making, Brain, 2012, 135, 3721–3734 Google Scholar

  • [36] Lisman J., Grace A.A., Düzel E., A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends Neurosci., 2011, 34, 536–547 CrossrefGoogle Scholar

  • [37] Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., et al., Involvement of hippocampal cAMP/cAMPdependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. USA, 1997, 94, 7041–7046 CrossrefGoogle Scholar

  • [38] Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W.A., van Dyck C.H., et al., Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo, Biol. Psychiatry, 2010, 68, 854–860 CrossrefGoogle Scholar

  • [39] Volkow N.D., Fowler J.S., Wang G., Ding Y., Gatley S.J., Mechanism of action of methylphenidate: insights from PET imaging studies, J. Atten. Disord., 2002, 6,Suppl. 1, S31–43 Google Scholar

  • [40] Andersen M.L., Kessler E., Murnane K.S., McClung J.C., Tufik S., Howell L.L., Dopamine transporter-related effects of modafinil in rhesus monkeys, Psychopharmacology, 2010, 210, 439–448 Google Scholar

  • [41] Outram S.M., The use of methylphenidate among students: the future of enhancement?, J. Med. Ethics, 2010, 36, 198–202 CrossrefGoogle Scholar

  • [42] Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J., Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, 2003, 165, 260–269 Google Scholar

  • [43] Linssen A.M.W., Vuurman E.F.P.M., Sambeth A., Riedel W.J., Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers, Psychopharmacology, 2012, 221, 611–619 Google Scholar

  • [44] Berridge C.W., Devilbiss D.M., Psychostimulants as cognitive Enhancers: the prefrontal cortex, catecholamines, and attentiondeficit/ hyperactivity disorder, Biol. Psychiatry, 2011, 69, E101–111 CrossrefGoogle Scholar

  • [45] Pierard C., Liscia P., Chauveau F., Coutan M., Corio M., Krazem A., et al., Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil, Pharmacol. Biochem. Behav., 2011, 97, 399–405 CrossrefGoogle Scholar

  • [46] Müller U., Rowe J.B., Rittman T., Lewis C., Robbins T.W., Sahakian B.J., Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers, Neuropharmacology, 2013, 64, 490–495 CrossrefGoogle Scholar

  • [47] Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, 20, 8620–8628 Google Scholar

  • [48] Meneses A., Ponce-Lopez T., Tellez R., Gonzalez R., Castillo C., Gasbarri A., Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats, Behav. Brain Res., 2011, 216, 472–476 Google Scholar

  • [49] Wiig K.A., Whitlock J.R., Epstein M.H., Carpenter R.L., Bear M.F., The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation, Neurobiol. Learn. Mem., 2009, 92, 106–113 CrossrefGoogle Scholar

  • [50] Ballard M.E., Gallo D.A., de Wit H., THC impairs, and amphetamine facilitates, memory encoding preferentially for emotionally salient stimuli, Soc. Neurosci. Abstr., 2011, 41, 752.06 Google Scholar

  • [51] Advokat C., Scheithauer M., Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers, Front. Neurosci., 2013, 7, 82 Google Scholar

  • [52] Sumowski J.F., Chiaravalloti N.D., Erlanger D.M., Kaushik T., Benedict R., DeLuca J., L-amphetamine improves memory capacity among memory-impaired patients with multiple sclerosis, Neurology, 2011, 76,Suppl. 4, A482 Google Scholar

  • [53] Jones S., Kornblum J.L., Kauer J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 2000, 20, 5575–5580 Google Scholar

  • [54] Del Arco A., González-Mora J.L., Armas V.R., Mora F., Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms, Neuropharmacology, 1999, 38, 943–954 CrossrefGoogle Scholar

  • [55] Drevets W.C., Gautier C., Price J.C., Kupfer D.J., Kinahan P.E., Grace A.A., et al., Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria, Biol. Psychiatry, 2001, 49, 81–96 CrossrefGoogle Scholar

  • [56] Imperato A., Obinu M.C., Gessa G.L., Effects of cocaine and amphetamine on acetylcholine-release in the hippocampus and caudate nucleus, Eur. J. Pharmacol., 1993, 238, 377–381 Google Scholar

  • [57] Day J.C., Fibiger H.C., Dopaminergic regulation of septohippocampal cholinergic neurons, J. Neurochem., 1994, 63, 2086–2092 Google Scholar

  • [58] Ponomarenko A.A., Lin J.S., Selbach O., Haas H.L., Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking, Neuroscience, 2003, 121, 759–769 CrossrefGoogle Scholar

  • [59] Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus, Neuron, 2007, 53, 261–277 CrossrefGoogle Scholar

  • [60] Rossato J.I., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Cammarota M., Dopamine controls persistence of long-term memory storage, Science, 2009, 325, 1017–1020 Google Scholar

  • [61] Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B., Infusion of brainderived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus, J. Neurosci., 2001, 21, 6706–6717 Google Scholar

  • [62] Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease, Nat. Med., 2009, 15, 331–337 CrossrefGoogle Scholar

  • [63] Patel N.K., Gill S.S., GDNF delivery for Parkinson’s disease, Acta Neurochir. Suppl., 2007, 97, 135–154 CrossrefGoogle Scholar

  • [64] Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J., Inducing sleep by remote control facilitates memory consolidation in Drosophila, Science, 2011, 332, 1571–1576 CrossrefGoogle Scholar

  • [65] Mathias S., Zihl J., Steiger A., Lancel M., Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects, Neuropsychopharmacology, 2005, 30, 833–841 Google Scholar

  • [66] Faulhaber J., Steiger A., Lancel M., The GABA(A) agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans, Psychopharmacology, 1997, 130, 285–291 Google Scholar

  • [67] Boyle J., Wolford D., Gargano C., McCrea J., Cummings C., Cerchio K., et al., Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects, Hum. Psychopharmacol., 2009, 24, 61–71 CrossrefGoogle Scholar

  • [68] Dijk D.J., James L.M., Peters S., Walsh J.K., Deacon S., Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep, J. Psychopharmacol., 2010, 24, 1613–1618 CrossrefGoogle Scholar

  • [69] Massimini M., Ferrarelli F., Esser S.K., Riedner B.A., Huber R., Murphy M., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8496–8501 CrossrefGoogle Scholar

  • [70] Marshall L., Helgadottir H., Moelle M., Born J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, 444, 610–613 Google Scholar

  • [71] Toni G., Riedner B.A., Hulse B.K., Ferrarelli F., Sarasso S., Enhancing sleep slow waves with natural stimuli, Medicamundi, 2010, 54, 73–79 Google Scholar

  • [72] Ngo H.-V.V., Martinetz T., Born J., Moelle M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, 78, 545–553 CrossrefGoogle Scholar

  • [73] van Praag H., Christie B.R., Sejnowski T.J., Gage F.H., Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA, 1999, 96, 13427–13431 CrossrefGoogle Scholar

  • [74] van Praag H., Neurogenesis and exercise: past and future directions, Neuromolecular Med., 2008, 10, 128–140 CrossrefGoogle Scholar

  • [75] Berggren K.L., Kerr A.L., Iles B.W., Nye S.H., Swain R.A., Exerciseinduced angiogenesis in the CNS of Dahl Salt-Sensitive and SSBN.13 consomic rats, Soc. Neurosci. Abstr., 2008, 38, 219.10 Google Scholar

  • [76] Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., et al., A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children, Brain Res., 2010, 1358, 172–183 Google Scholar

  • [77] Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., et al., Exercise training increases size of hippocampus and improves memory, Proc. Natl. Acad. Sci. USA, 2011, 108, 3017–3022 CrossrefGoogle Scholar

  • [78] Coles K., Tomporowski P.D., Effects of acute exercise on executive processing, short-term and long-term memory, J. Sports Sci., 2008, 26, 333–344 CrossrefGoogle Scholar

  • [79] Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates, Proc. Nat. Acad. Sci. USA, 1999, 96, 5263–5267 CrossrefGoogle Scholar

  • [80] Amrein I., Isler K., Lipp H.-P., Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage, Eur. J. Neurosci., 2011, 34, 978–987 CrossrefGoogle Scholar

  • [81] Apostolova L.G., Green A.E., Babakchanian S., Hwang K.S., Chou Y.-Y., Toga A.W., et al., Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2012, 26, 17–27 CrossrefGoogle Scholar

  • [82] Garcia-Mesa Y., Carlos Lopez-Ramos J., Gimenez-Llort L., Revilla S., Guerra R., Gruart A., et al., Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice, J. Alzheimers Dis., 2011, 24, 421–454 Google Scholar

  • [83] Rodriguez J.J., Noristani H.N., Olabarria M., Fletcher J., Somerville T.D.D., Yeh C.Y., et al., Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2011, 8, 707–717 CrossrefGoogle Scholar

  • [84] Nagamatsu L.S., Chan A., Davis J.C., Beattie J.C., Beattie B.L., Graf P., et al., Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial, J. Aging Res., 2013, 861893 Google Scholar

  • [85] Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial, JAMA, 2008, 300, 1027–1037 Google Scholar

  • [86] Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G.M., Tufik S., Meeusen R., et al., Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms, Neuroscience, 2012, 202, 309–317 Google Scholar

  • [87] Chen D.Y., Stern S.A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., et al., A critical role for IGF-II in memory consolidation and enhancement, Nature, 2011, 469, 491–497 Google Scholar

  • [88] Dash M.B., Bellesi M., Tononi G., Cirelli C., Sleep/wake dependent changes in cortical glucose concentrations, J. Neurochem., 2013, 124, 79–89 CrossrefGoogle Scholar

  • [89] Jones E.K., Suenram-Lea S.I., Wesnes K.A., Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults, Biol. Psychol., 2012, 89, 477–486 CrossrefPubMedGoogle Scholar

  • [90] Messier C., Glucose improvement of memory: a review, Eur. J. Pharmacol., 2004, 490, 33–57 Google Scholar

  • [91] Smith M.A., Riby L.M., van Eekelen J.A.M., Foster J.K., Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect, Neurosci. Biobehav. Rev., 2011, 35, 770–783 CrossrefGoogle Scholar

  • [92] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels, Psychopharmacology, 2001, 157, 46–54 Google Scholar

  • [93] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect, Psychopharmacology, 2002, 160, 387–397 Google Scholar

  • [94] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516 Google Scholar

  • [95] Varady K.A., Hellerstein M.K., Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 2007, 86, 7–13 Google Scholar

  • [96] Partridge L., Piper M.D.W., Mair W., Dietary restriction in Drosophila, Mech. Ageing Dev., 2005, 126, 938–950 CrossrefGoogle Scholar

  • [97] Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature, 2012, 489, 318–321 Google Scholar

  • [98] Weindruch R., Walford R.L., Fligiel S., Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy-intake, J. Nutr., 1986, 116, 641–654 Google Scholar

  • [99] Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 2009, 325, 201–204 Google Scholar

  • [100] Eckles-Smith K., Clayton D., Bickford P., Browning M.D., Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression, Mol. Brain Res., 2000, 78, 154–162 CrossrefGoogle Scholar

  • [101] Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., et al., Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age, 2012, 34, 917–933 CrossrefGoogle Scholar

  • [102] Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422 Google Scholar

  • [103] Wu P., Shen Q., Dong S., Xu Z., Tsien J.Z., Hu Y., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice, Neurobiol. Aging, 2008, 29, 1502–1511 Google Scholar

  • [104] Thaler S., Choragiewicz T.J., Rejdak R., Fiedorowicz M., Turski W.A., Tulidowicz-Bielak M., et al., Neuroprotection by acetoacetate and beta-hydroxybutyrate against NMDA-induced RGC damage in ratpossible involvement of kynurenic acid, Graefes Arch. Clin. Exp. Ophthal., 2010, 248, 1729–1735 Google Scholar

  • [105] Henderson S.T., Ketone bodies as a therapeutic for Alzheimer’s disease, Neurotherapeutics, 2008, 5, 470–480 CrossrefGoogle Scholar

  • [106] Reger M.A., Henderson S.T., Hale C., Cholerton B., Baker L.D., Watson G.S., et al., Effects of beta-hydroxybutyrate on cognition in memoryimpaired adults, Neurobiol. Aging, 2004, 25, 311–314 CrossrefGoogle Scholar

  • [107] Dhurandhar E.J., Allison D.B., van Groen T., Kadish I., Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model, PLoS One, 2013, 8, e60437 Google Scholar

  • [108] Cao D.H., Kevala K., Kim J., Moon H.S., Jun S.B., Lovinger D., et al., Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function, J. Neurochem., 2009, 111, 510–521 CrossrefGoogle Scholar

  • [109] Bhatia H.S., Agrawal R., Sharma S., Huo Y.-X., Ying Z., Gomez-Pinilla F., Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood, PLoS One, 2011, 6, e28451 Google Scholar

  • [110] Vines A., Delattre A.M., Lima M.M.S., Rodrigues L.S., Suchecki D., Machado R.B., et al., The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism, Neuropharmacology, 2012, 62, 184–191 CrossrefGoogle Scholar

  • [111] Arsenault D., Julien C., Tremblay C., Calon F., DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice, PLoS One, 2011, 6, e17397 Google Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2013-12-01

Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0140-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alice Mason, Simon Farrell, Paul Howard-Jones, and Casimir J.H. Ludwig
Journal of Memory and Language, 2017, Volume 96, Page 62

Comments (0)

Please log in or register to comment.
Log in