Jump to ContentJump to Main Navigation
Show Summary Details

Translational Neuroscience

Editor-in-Chief: Šimic, Goran


IMPACT FACTOR 2015: 1.012

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286
Impact per Publication (IPP) 2015: 1.155

Open Access
Online
ISSN
2081-6936
See all formats and pricing




Memory consolidation — Mechanisms and opportunities for enhancement

1Institute of Clinical Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, UK

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Translational Neuroscience. Volume 4, Issue 4, Pages 448–457, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: 10.2478/s13380-013-0140-3, December 2013

Publication History

Published Online:
2013-12-20

Abstract

Memory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.

Keywords: Alzheimer’s disease (AD); Dementia; Sleep; Exercise; Diet; Calorie restriction; Hippocampus; Neurogeneration; Acetylcholine; Dopamine

  • [1] Launer L.J., Andersen K., Dewey M.E., Letenneur L., Ott A., Amaducci L.A., et al., Rates and risk factors for dementia and Alzheimer’s disease — Results from EURODEM pooled analyses, Neurology, 1999, 52, 78–84 [Crossref]

  • [2] Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278 [Crossref]

  • [3] Schuff N., Woerner N., Boreta L., Kornfield T., Shaw L.M., Trojanowski J.Q., et al., MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers, Brain, 2009, 132, 1067–1077

  • [4] McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269 [Crossref]

  • [5] Vincent A., Buckley C., Schott J.M., Baker I., Dewar B.K., Detert N., et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, 2004, 127, 701–712

  • [6] Spencer R.M.C., Gouw A.M., Ivry R.B., Age-related decline of sleepdependent consolidation, Learn. Mem., 2007, 14, 480–484

  • [7] Buzsáki G., Two-stage model of memory trace formation — a role for “noisy” brain states, Neuroscience, 1989, 31, 551–570 [Crossref]

  • [8] Rasch B., Born J., Maintaining memories by reactivation, Curr. Opin. Neurobiol., 2007, 17, 698–703 [Crossref]

  • [9] Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training, Nat. Neurosci., 2000, 3, 1237–1238 [Crossref]

  • [10] Fischer S., Hallschmid M., Elsner A.L., Born J., Sleep forms memory for finger skills, Proc. Natl. Acad. Sci. USA, 2002, 99, 11987–11991 [Crossref]

  • [11] Rasch B., Buechel C., Gais S., Born J., Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 2007, 315, 1426–1429

  • [12] Buzsáki G., Hippocampal sharp waves — their origin and significance, Brain Res., 1986, 398, 242–252

  • [13] Behrens C.J., van den Boom L.P., de Hoz L., Friedman A., Heinemann U., Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks, Nat. Neurosci., 2005, 8, 1560–1567 [Crossref]

  • [14] Sirota A., Csicsvari J., Buhl D., Buzsáki G., Communication between neocortex and hippocampus during sleep in rodents, Proc. Natl. Acad. Sci. USA, 2003, 100, 2065–2069 [Crossref]

  • [15] Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci., 2007, 10, 100–107 [Crossref]

  • [16] Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep, Nat. Neurosci., 2009, 12, 919–926 [Crossref]

  • [17] Gauthier S., Scheltens P., Can we do better in developing new drugs for Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 489–491 [Crossref]

  • [18] Bartus R.T., Dean R.L., Beer B., Lippa A.S., The cholinergic hypothesis of geriatric memory dysfunction, Science, 1982, 217, 408–417

  • [19] Davies P., Maloney A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 1976, 2, 1403–1403 [Crossref]

  • [20] Drachman D.A., Leavitt J., Human memory and cholinergic system — relationship to aging, Arch. Neurol., 1974, 30, 113–121

  • [21] Ellis B.W., Johns M.W., Lancaster R., Raptopoulos P., Angelopoulos N., Priest R.G., The St. Mary’s Hospital sleep questionnaire: a study of reliability, Sleep, 1981, 4, 93–97

  • [22] Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al., Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease, Arch. Neurol., 1997, 54, 465–473

  • [23] Levey A.I., Immunological localization of m1-m5 muscarinic acetylcholine-receptors in peripheral-tissues and brain, Life Sci., 1993, 52, 441–448 [Crossref]

  • [24] Roldán G., Bolaños-Badillo E., González-Sánchez H., Quirarte G.L., Prado-Alcalá R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats, Neurosci. Lett., 1997, 230, 93–96

  • [25] Ferreira A.R., Fürstenau L., Blanco C., Kornisiuk E., Sánchez G., Daroit D., et al., Role of hippocampal M-1 and M-4 muscarinic receptor subtypes in memory consolidation in the rat, Pharmacol. Biochem. Behav., 2003, 74, 411–415 [Crossref]

  • [26] Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., et al., Selective cognitive dysfunction in acetylcholine M-1 muscarinic receptor mutant mice, Nat. Neurosci., 2003, 6, 51–58

  • [27] Nissen C., Power A.E., Noftinger E.A., Feige B., Voderholzer U., Kloepfer C., et al., M-1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation, J. Cogn. Neurosci., 2006, 18, 1799–1807

  • [28] Foster N.L., Aldrich M.S., Bluemlein L., White R.F., Berent S., Failure of cholinergic agonist RS-86 to improve cognition and movement in PSP despite effects on sleep, Neurology, 1989, 39, 257–261 [Crossref]

  • [29] Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al., A randomized trial of deep-brain stimulation for Parkinson’s disease, N. Engl. J. Med., 2006, 355, 896–908

  • [30] Huys D., Möller M., Kim E.H., Hardenacke K., Huff W., Klosterkötter J., et al., Deep brain stimulation for psychiatric disorders: historical basis, Nervenarzt, 2012, 83, 1156–1168 [Crossref]

  • [31] Laxton A.W., Tang-Wai D.F., McAndrews M.P., Zumsteg D., Wennberg R., Keren R., et al., A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s Disease, Ann. Neurol., 2010, 68, 521–534 [Crossref]

  • [32] Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., et al., Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 2012, 366, 502–510

  • [33] Bethus I., Tse D., Morris R.G.M., Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptordependent paired associates, J. Neurosci., 2010, 30, 1610–1618 [Crossref]

  • [34] Chowdhury R., Guitart-Masip M., Bunzeck N., Dolan R.J., Düzel E., Dopamine modulates episodic memory persistence in old age, J. Neurosci., 2012, 32, 14193–14204 [Crossref]

  • [35] Coulthard E.J., Bogacz R., Javed S., Mooney L.K., Murphy G., Keeley S., et al., Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making, Brain, 2012, 135, 3721–3734

  • [36] Lisman J., Grace A.A., Düzel E., A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends Neurosci., 2011, 34, 536–547 [Crossref]

  • [37] Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., et al., Involvement of hippocampal cAMP/cAMPdependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. USA, 1997, 94, 7041–7046 [Crossref]

  • [38] Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W.A., van Dyck C.H., et al., Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo, Biol. Psychiatry, 2010, 68, 854–860 [Crossref]

  • [39] Volkow N.D., Fowler J.S., Wang G., Ding Y., Gatley S.J., Mechanism of action of methylphenidate: insights from PET imaging studies, J. Atten. Disord., 2002, 6,Suppl. 1, S31–43

  • [40] Andersen M.L., Kessler E., Murnane K.S., McClung J.C., Tufik S., Howell L.L., Dopamine transporter-related effects of modafinil in rhesus monkeys, Psychopharmacology, 2010, 210, 439–448

  • [41] Outram S.M., The use of methylphenidate among students: the future of enhancement?, J. Med. Ethics, 2010, 36, 198–202 [Crossref]

  • [42] Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J., Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, 2003, 165, 260–269

  • [43] Linssen A.M.W., Vuurman E.F.P.M., Sambeth A., Riedel W.J., Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers, Psychopharmacology, 2012, 221, 611–619

  • [44] Berridge C.W., Devilbiss D.M., Psychostimulants as cognitive Enhancers: the prefrontal cortex, catecholamines, and attentiondeficit/ hyperactivity disorder, Biol. Psychiatry, 2011, 69, E101–111 [Crossref]

  • [45] Pierard C., Liscia P., Chauveau F., Coutan M., Corio M., Krazem A., et al., Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil, Pharmacol. Biochem. Behav., 2011, 97, 399–405 [Crossref]

  • [46] Müller U., Rowe J.B., Rittman T., Lewis C., Robbins T.W., Sahakian B.J., Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers, Neuropharmacology, 2013, 64, 490–495 [Crossref]

  • [47] Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, 20, 8620–8628

  • [48] Meneses A., Ponce-Lopez T., Tellez R., Gonzalez R., Castillo C., Gasbarri A., Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats, Behav. Brain Res., 2011, 216, 472–476

  • [49] Wiig K.A., Whitlock J.R., Epstein M.H., Carpenter R.L., Bear M.F., The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation, Neurobiol. Learn. Mem., 2009, 92, 106–113 [Crossref]

  • [50] Ballard M.E., Gallo D.A., de Wit H., THC impairs, and amphetamine facilitates, memory encoding preferentially for emotionally salient stimuli, Soc. Neurosci. Abstr., 2011, 41, 752.06

  • [51] Advokat C., Scheithauer M., Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers, Front. Neurosci., 2013, 7, 82

  • [52] Sumowski J.F., Chiaravalloti N.D., Erlanger D.M., Kaushik T., Benedict R., DeLuca J., L-amphetamine improves memory capacity among memory-impaired patients with multiple sclerosis, Neurology, 2011, 76,Suppl. 4, A482

  • [53] Jones S., Kornblum J.L., Kauer J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 2000, 20, 5575–5580

  • [54] Del Arco A., González-Mora J.L., Armas V.R., Mora F., Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms, Neuropharmacology, 1999, 38, 943–954 [Crossref]

  • [55] Drevets W.C., Gautier C., Price J.C., Kupfer D.J., Kinahan P.E., Grace A.A., et al., Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria, Biol. Psychiatry, 2001, 49, 81–96 [Crossref]

  • [56] Imperato A., Obinu M.C., Gessa G.L., Effects of cocaine and amphetamine on acetylcholine-release in the hippocampus and caudate nucleus, Eur. J. Pharmacol., 1993, 238, 377–381

  • [57] Day J.C., Fibiger H.C., Dopaminergic regulation of septohippocampal cholinergic neurons, J. Neurochem., 1994, 63, 2086–2092

  • [58] Ponomarenko A.A., Lin J.S., Selbach O., Haas H.L., Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking, Neuroscience, 2003, 121, 759–769 [Crossref]

  • [59] Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus, Neuron, 2007, 53, 261–277 [Crossref]

  • [60] Rossato J.I., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Cammarota M., Dopamine controls persistence of long-term memory storage, Science, 2009, 325, 1017–1020

  • [61] Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B., Infusion of brainderived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus, J. Neurosci., 2001, 21, 6706–6717

  • [62] Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease, Nat. Med., 2009, 15, 331–337 [Crossref]

  • [63] Patel N.K., Gill S.S., GDNF delivery for Parkinson’s disease, Acta Neurochir. Suppl., 2007, 97, 135–154 [Crossref]

  • [64] Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J., Inducing sleep by remote control facilitates memory consolidation in Drosophila, Science, 2011, 332, 1571–1576 [Crossref]

  • [65] Mathias S., Zihl J., Steiger A., Lancel M., Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects, Neuropsychopharmacology, 2005, 30, 833–841

  • [66] Faulhaber J., Steiger A., Lancel M., The GABA(A) agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans, Psychopharmacology, 1997, 130, 285–291

  • [67] Boyle J., Wolford D., Gargano C., McCrea J., Cummings C., Cerchio K., et al., Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects, Hum. Psychopharmacol., 2009, 24, 61–71 [Crossref]

  • [68] Dijk D.J., James L.M., Peters S., Walsh J.K., Deacon S., Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep, J. Psychopharmacol., 2010, 24, 1613–1618 [Crossref]

  • [69] Massimini M., Ferrarelli F., Esser S.K., Riedner B.A., Huber R., Murphy M., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8496–8501 [Crossref]

  • [70] Marshall L., Helgadottir H., Moelle M., Born J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, 444, 610–613

  • [71] Toni G., Riedner B.A., Hulse B.K., Ferrarelli F., Sarasso S., Enhancing sleep slow waves with natural stimuli, Medicamundi, 2010, 54, 73–79

  • [72] Ngo H.-V.V., Martinetz T., Born J., Moelle M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, 78, 545–553 [Crossref]

  • [73] van Praag H., Christie B.R., Sejnowski T.J., Gage F.H., Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA, 1999, 96, 13427–13431 [Crossref]

  • [74] van Praag H., Neurogenesis and exercise: past and future directions, Neuromolecular Med., 2008, 10, 128–140 [Crossref]

  • [75] Berggren K.L., Kerr A.L., Iles B.W., Nye S.H., Swain R.A., Exerciseinduced angiogenesis in the CNS of Dahl Salt-Sensitive and SSBN.13 consomic rats, Soc. Neurosci. Abstr., 2008, 38, 219.10

  • [76] Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., et al., A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children, Brain Res., 2010, 1358, 172–183

  • [77] Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., et al., Exercise training increases size of hippocampus and improves memory, Proc. Natl. Acad. Sci. USA, 2011, 108, 3017–3022 [Crossref]

  • [78] Coles K., Tomporowski P.D., Effects of acute exercise on executive processing, short-term and long-term memory, J. Sports Sci., 2008, 26, 333–344 [Crossref]

  • [79] Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates, Proc. Nat. Acad. Sci. USA, 1999, 96, 5263–5267 [Crossref]

  • [80] Amrein I., Isler K., Lipp H.-P., Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage, Eur. J. Neurosci., 2011, 34, 978–987 [Crossref]

  • [81] Apostolova L.G., Green A.E., Babakchanian S., Hwang K.S., Chou Y.-Y., Toga A.W., et al., Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2012, 26, 17–27 [Crossref]

  • [82] Garcia-Mesa Y., Carlos Lopez-Ramos J., Gimenez-Llort L., Revilla S., Guerra R., Gruart A., et al., Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice, J. Alzheimers Dis., 2011, 24, 421–454

  • [83] Rodriguez J.J., Noristani H.N., Olabarria M., Fletcher J., Somerville T.D.D., Yeh C.Y., et al., Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2011, 8, 707–717 [Crossref]

  • [84] Nagamatsu L.S., Chan A., Davis J.C., Beattie J.C., Beattie B.L., Graf P., et al., Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial, J. Aging Res., 2013, 861893

  • [85] Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial, JAMA, 2008, 300, 1027–1037

  • [86] Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G.M., Tufik S., Meeusen R., et al., Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms, Neuroscience, 2012, 202, 309–317

  • [87] Chen D.Y., Stern S.A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., et al., A critical role for IGF-II in memory consolidation and enhancement, Nature, 2011, 469, 491–497

  • [88] Dash M.B., Bellesi M., Tononi G., Cirelli C., Sleep/wake dependent changes in cortical glucose concentrations, J. Neurochem., 2013, 124, 79–89 [Crossref]

  • [89] Jones E.K., Suenram-Lea S.I., Wesnes K.A., Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults, Biol. Psychol., 2012, 89, 477–486 [Crossref] [PubMed]

  • [90] Messier C., Glucose improvement of memory: a review, Eur. J. Pharmacol., 2004, 490, 33–57

  • [91] Smith M.A., Riby L.M., van Eekelen J.A.M., Foster J.K., Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect, Neurosci. Biobehav. Rev., 2011, 35, 770–783 [Crossref]

  • [92] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels, Psychopharmacology, 2001, 157, 46–54

  • [93] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect, Psychopharmacology, 2002, 160, 387–397

  • [94] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516

  • [95] Varady K.A., Hellerstein M.K., Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 2007, 86, 7–13

  • [96] Partridge L., Piper M.D.W., Mair W., Dietary restriction in Drosophila, Mech. Ageing Dev., 2005, 126, 938–950 [Crossref]

  • [97] Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature, 2012, 489, 318–321

  • [98] Weindruch R., Walford R.L., Fligiel S., Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy-intake, J. Nutr., 1986, 116, 641–654

  • [99] Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 2009, 325, 201–204

  • [100] Eckles-Smith K., Clayton D., Bickford P., Browning M.D., Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression, Mol. Brain Res., 2000, 78, 154–162 [Crossref]

  • [101] Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., et al., Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age, 2012, 34, 917–933 [Crossref]

  • [102] Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422

  • [103] Wu P., Shen Q., Dong S., Xu Z., Tsien J.Z., Hu Y., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice, Neurobiol. Aging, 2008, 29, 1502–1511

  • [104] Thaler S., Choragiewicz T.J., Rejdak R., Fiedorowicz M., Turski W.A., Tulidowicz-Bielak M., et al., Neuroprotection by acetoacetate and beta-hydroxybutyrate against NMDA-induced RGC damage in ratpossible involvement of kynurenic acid, Graefes Arch. Clin. Exp. Ophthal., 2010, 248, 1729–1735

  • [105] Henderson S.T., Ketone bodies as a therapeutic for Alzheimer’s disease, Neurotherapeutics, 2008, 5, 470–480 [Crossref]

  • [106] Reger M.A., Henderson S.T., Hale C., Cholerton B., Baker L.D., Watson G.S., et al., Effects of beta-hydroxybutyrate on cognition in memoryimpaired adults, Neurobiol. Aging, 2004, 25, 311–314 [Crossref]

  • [107] Dhurandhar E.J., Allison D.B., van Groen T., Kadish I., Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model, PLoS One, 2013, 8, e60437

  • [108] Cao D.H., Kevala K., Kim J., Moon H.S., Jun S.B., Lovinger D., et al., Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function, J. Neurochem., 2009, 111, 510–521 [Crossref]

  • [109] Bhatia H.S., Agrawal R., Sharma S., Huo Y.-X., Ying Z., Gomez-Pinilla F., Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood, PLoS One, 2011, 6, e28451

  • [110] Vines A., Delattre A.M., Lima M.M.S., Rodrigues L.S., Suchecki D., Machado R.B., et al., The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism, Neuropharmacology, 2012, 62, 184–191 [Crossref]

  • [111] Arsenault D., Julien C., Tremblay C., Calon F., DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice, PLoS One, 2011, 6, e17397

Comments (0)

Please log in or register to comment.