Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier


IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Non-invasive cerebellar stimulation in dystonia

Lynton Graetz
  • Applied Brain Research Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, Australia
  • School of Psychology, Flinders University, Adelaide, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lynley Bradnam
  • Applied Brain Research Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, Australia
  • Effectiveness of Therapy Group, Centre for Clinical Change and Healthcare Research, School of Medicine, Flinders University, Adelaide, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s13380-013-0143-0

Abstract

Primary isolated dystonia is a hyperkinetic movement disorder whereby involuntary muscle contractions cause twisted and abnormal postures. Dystonia of the cervical spine and upper limb may present as sustained muscle contractions or task-specific activity when using the hand or upper limb. There is little understanding of the pathophysiology underlying dystonia and this presents a challenge for clinicians and researchers alike. Emerging evidence that the cerebellum is involved in the pathophysiology of dystonia using network models presents the intriguing concept that the cerebellum could provide a novel target for non-invasive brain stimulation. Non-invasive stimulation to increase cerebellar excitability improved aspects of handwriting and circle drawing in a small cohort of people with focal hand and cervical dystonia. Mechanisms underlying the improvement in function are unknown, but putative pathways may involve the red nucleus and/or the cervical propriospinal system. Furthermore, recent understanding that the cerebellum has both motor and cognitive functions suggests that non-invasive cerebellar stimulation may improve both motor and non-motor aspects of dystonia. We propose a combination of motor and non-motor tasks that challenge cerebellar function may be combined with cerebellar non-invasive brain stimulation in the treatment of focal dystonia. Better understanding of how the cerebellum contributes to dystonia may be gained by using network models such as our putative circuits involving red nucleus and/or the cervical propriospinal system. Finally, novel treatment interventions encompassing both motor and non-motor functions of the cerebellum may prove effective for neurological disorders that exhibit cerebellar dysfunction.

Keywords: Propriospinal; Red nucleus; Rubrospinal; Transcranial direct current stimulation; Non-motor; Focal hand dystonia; Cervical dystonia

  • [1] Phukan J., Albanese A., Gasser T., Warner T., Primary dystonia and dystonia-plus syndromes: clinical characteristics, diagnosis, and pathogenesis, Lancet Neurol., 2011, 10, 1074–1085 http://dx.doi.org/10.1016/S1474-4422(11)70232-0CrossrefGoogle Scholar

  • [2] Lim V.K., Health related quality of life in patients with dystonia and their caregivers in New Zealand and Australia, Mov. Disord., 2007, 22, 998–1003 http://dx.doi.org/10.1002/mds.21486CrossrefGoogle Scholar

  • [3] Zetterberg L., Aquilonius S.M., Lindmark B., Impact of dystonia on quality of life and health in a Swedish population, Acta Neurol. Scand., 2009, 119, 376–382 http://dx.doi.org/10.1111/j.1600-0404.2008.01111.xCrossrefGoogle Scholar

  • [4] Batla A., Stamelou M., Bhatia K.P., Treatment of focal dystonia, Curr. Treat. Options Neurol., 2012, 14, 213–229 http://dx.doi.org/10.1007/s11940-012-0169-6CrossrefGoogle Scholar

  • [5] Tassorelli C., Mancini F., Balloni L., Pacchetti C., Sandrini G., Nappi G., et al., Botulinum toxin and neuromotor rehabilitation: An integrated approach to idiopathic cervical dystonia, Mov. Disord., 2006, 21, 2240–2243 http://dx.doi.org/10.1002/mds.21145CrossrefGoogle Scholar

  • [6] Zetterberg L., Halvorsen K., Farnstrand C., Aquilonius S.M., Lindmark B., Physiotherapy in cervical dystonia: six experimental single-case studies, Physiother. Theory Pract., 2008, 24, 275–290 http://dx.doi.org/10.1080/09593980701884816CrossrefGoogle Scholar

  • [7] Jahanshahi M., Torkamani M., Beigi M., Wilkinson L., Page D., Madeley L., et al., Pallidal stimulation for primary generalised dystonia: effect on cognition, mood and quality of life, J. Neurol., 2013, [Epub ahead of print], doi: 10.1007/s00415-013-7161-2 CrossrefGoogle Scholar

  • [8] Petrossian M.T., Paul L.R., Multhaupt-Buell T.J., Eckhardt C., Hayes M.T., Duhaime A.C., et al., Pallidal deep brain stimulation for dystonia: a case series, J. Neurosurg. Pediatr., 2013, [Epub ahead of print], doi: 10.3171/2013.8.PEDS13134 CrossrefGoogle Scholar

  • [9] Sadnicka A., Kimmich O., Pisarek C., Ruge D., Galea J., Kassavetis P., et al., Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination, Mov. Disord., 2013, 28, 1874–1877 http://dx.doi.org/10.1002/mds.25581CrossrefGoogle Scholar

  • [10] Witt J.L., Moro E., Ash R.S., Hamani C., Starr P.A., Lozano A.M., et al., Predictive factors of outcome in primary cervical dystonia following pallidal deep brain stimulation, Mov. Disord., 2013, 28, 1451–1455 Google Scholar

  • [11] Hallett M., Neurophysiology of dystonia: the role of inhibition, Neurobiol. Dis., 2011, 42, 177–184 http://dx.doi.org/10.1016/j.nbd.2010.08.025CrossrefGoogle Scholar

  • [12] Kimberley T.J., Pickett K.A., Differential activation in the primary motor cortex during individual digit movement in focal hand dystonia vs. healthy, Restor. Neurol. Neurosci., 2012, 30, 247–254 Google Scholar

  • [13] Benninger D.H., Lomarev M., Lopez G., Pal N., Luckenbaugh D.A., Hallett M., Transcranial direct current stimulation for the treatment of focal hand dystonia, Mov. Disord., 2011, 26, 1698–1702 http://dx.doi.org/10.1002/mds.23691CrossrefGoogle Scholar

  • [14] Buttkus F., Baur V., Jabusch H.C., de la Cruz Gomez-Pellin M., Paulus W., Nitsche M.A., et al., Single-session tDCS-supported retraining does not improve fine motor control in musician’s dystonia, Restor. Neurol. Neurosci., 2011, 29, 85–90 Google Scholar

  • [15] Huang Y.Z., Rothwell J.C., Lu C.S., Wang J., Chen R.S., Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia, Mov. Disord., 2010, 25, 696–703 http://dx.doi.org/10.1002/mds.22814CrossrefGoogle Scholar

  • [16] Kimberley T.J., Borich M.R., Arora S., Siebner H.R., Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects, Restor. Neurol. Neurosci., 2013, 31, 533–542 Google Scholar

  • [17] Borich M., Arora S., Kimberley T.J., Lasting effects of repeated rTMS application in focal hand dystonia, Restor. Neurol. Neurosci., 2009, 27, 55–65 Google Scholar

  • [18] Jinnah H.A., Hess E.J., A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum?, Neurology, 2006, 67, 1740–1741 http://dx.doi.org/10.1212/01.wnl.0000246112.19504.61CrossrefGoogle Scholar

  • [19] Neychev V.K., Fan X., Mitev V.I., Hess E.J., Jinnah H.A., The basal ganglia and cerebellum interact in the expression of dystonic movement, Brain, 2008, 131, 2499–2509 http://dx.doi.org/10.1093/brain/awn168CrossrefGoogle Scholar

  • [20] Neychev V.K., Gross R.E., Lehericy S., Hess E.J., Jinnah H.A., The functional neuroanatomy of dystonia, Neurobiol. Dis., 2011, 42, 185–201 http://dx.doi.org/10.1016/j.nbd.2011.01.026CrossrefGoogle Scholar

  • [21] Wu C.C., Fairhall S.L., McNair N.A., Hamm J.P., Kirk I.J., Cunnington R., et al., Impaired sensorimotor integration in focal hand dystonia patients in the absence of symptoms, J. Neurol. Neurosurg. Psychiatry, 2010, 81, 659–665 http://dx.doi.org/10.1136/jnnp.2009.185637CrossrefGoogle Scholar

  • [22] Bradnam L., Barry C., The role of the trigeminal sensory nuclear complex in the pathophysiology of cranio-cervical dystonia, J. Neurosci., 2013, 33, 18358–18367 http://dx.doi.org/10.1523/JNEUROSCI.3544-13.2013CrossrefGoogle Scholar

  • [23] Tedesco A.M., Chiricozzi F.R., Clausi S., Lupo M., Molinari M., Leggio M.G., The cerebellar cognitive profile, Brain, 2011, 134, 3672–3686 http://dx.doi.org/10.1093/brain/awr266CrossrefGoogle Scholar

  • [24] Koziol L.F., Budding D., Andreasen N., D’Arrigo S., Bulgheroni S., Imamizu H., et al., Consensus paper: the cerebellum’s role in movement and cognition, Cerebellum, 2013, [Epub ahead of print], 10.1007/s12311-013-0511-x Google Scholar

  • [25] Wilson B.K., Hess E.J., Animal models for dystonia, Mov. Disord., 2013, 28, 982–989 http://dx.doi.org/10.1002/mds.25526CrossrefGoogle Scholar

  • [26] Raike R.S., Pizoli C.E., Weisz C., van den Maagdenberg A.M., Jinnah H.A., Hess E.J., Limited regional cerebellar dysfunction induces focal dystonia in mice, Neurobiol. Dis., 2012, 49C, 200–210 Google Scholar

  • [27] Todorov B., Kros L., Shyti R., Plak P., Haasdijk E.D., Raike R.S., et al., Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice, Cerebellum, 2012, 11, 246–258 http://dx.doi.org/10.1007/s12311-011-0302-1CrossrefGoogle Scholar

  • [28] Prudente C.N., Pardo C.A., Xiao J., Hanfelt J., Hess E.J., Ledoux M.S., et al., Neuropathology of cervical dystonia, Exp. Neurol., 2013, 241, 95–104 http://dx.doi.org/10.1016/j.expneurol.2012.11.019CrossrefGoogle Scholar

  • [29] Zoons E., Tijssen M.A., Pathologic changes in the brain in cervical dystonia pre- and post-mortem — a commentary with a special focus on the cerebellum, Exp. Neurol., 2013, 247, 130–133 http://dx.doi.org/10.1016/j.expneurol.2013.04.005CrossrefGoogle Scholar

  • [30] Argyelan M., Carbon M., Niethammer M., Ulug A.M., Voss H.U., Bressman S.B., et al., Cerebellothalamocortical connectivity regulates penetrance in dystonia, J. Neurosci., 2009, 29, 9740–9747 http://dx.doi.org/10.1523/JNEUROSCI.2300-09.2009CrossrefGoogle Scholar

  • [31] Doshi A., Rohrer J., Warner T., A case supporting the role of the cerebellum in dystonia, J. Neurol. Neurosurg. Psychiatry, 2013, 84, e2 CrossrefGoogle Scholar

  • [32] Hoffland B.S., Bologna M., Kassavetis P., Teo J.T., Rothwell J.C., Yeo C.H., et al., Cerebellar theta burst stimulation impairs eyeblink classical conditioning, J. Physiol., 2012, 590, 887–897 Google Scholar

  • [33] Teo J.T., van de Warrenburg B.P., Schneider S.A., Rothwell J.C., Bhatia K.P., Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia, J. Neurol. Neurosurg. Psychiatry, 2009, 80, 80–83 http://dx.doi.org/10.1136/jnnp.2008.144626CrossrefGoogle Scholar

  • [34] Hoffland B.S., Kassavetis P., Bologna M., Teo J.T., Bhatia K.P., Rothwell J.C., et al., Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice, Eur. J. Neurosci., 2013, 38, 2166–2171 http://dx.doi.org/10.1111/ejn.12186CrossrefGoogle Scholar

  • [35] Bradnam L., Graetz L., McDonnell M., Ridding M., Non-invasive cerebellar stimulation in focal dystonia, Mov. Disord., 2013, 28, S10 Google Scholar

  • [36] Daskalakis Z.J., Paradiso G.O., Christensen B.K., Fitzgerald P.B., Gunraj C., Chen R., Exploring the connectivity between the cerebellum and motor cortex in humans, J. Physiol., 2004, 557, 689–700 http://dx.doi.org/10.1113/jphysiol.2003.059808CrossrefGoogle Scholar

  • [37] Ugawa Y., Uesaka Y., Terao Y., Hanajima R., Kanazawa I., Magnetic stimulation over the cerebellum in humans, Ann. Neurol., 1995, 37, 703–713 http://dx.doi.org/10.1002/ana.410370603CrossrefGoogle Scholar

  • [38] Oliveri M., Torriero S., Koch G., Salerno S., Petrosini L., Caltagirone C., The role of transcranial magnetic stimulation in the study of cerebellar cognitive function, Cerebellum, 2007, 6, 95–101 http://dx.doi.org/10.1080/14734220701213421CrossrefGoogle Scholar

  • [39] Kassavetis P., Hoffland B.S., Saifee T.A., Bhatia K.P., van de Warrenburg B.P., Rothwell J.C., et al., Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement, Exp. Brain Res., 2011, 209, 437–442 http://dx.doi.org/10.1007/s00221-011-2575-5CrossrefGoogle Scholar

  • [40] Brighina F., Romano M., Giglia G., Saia V., Puma A., Giglia F., et al., Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report, Exp. Brain Res., 2009, 192, 651–656 http://dx.doi.org/10.1007/s00221-008-1572-9CrossrefGoogle Scholar

  • [41] Lu M.K., Tsai C.H., Ziemann U., Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex, Front. Hum. Neurosci., 2012, 6, 260 Google Scholar

  • [42] Bostan A.C., Dum R.P., Strick P.L., The basal ganglia communicate with the cerebellum, Proc. Natl. Acad. Sci. USA, 2010, 107, 8452–8456 http://dx.doi.org/10.1073/pnas.1000496107CrossrefGoogle Scholar

  • [43] Bostan A.C., Dum R.P., Strick P.L., Cerebellar networks with the cerebral cortex and basal ganglia, Trends Cogn. Sci., 2013, 17, 241–254 http://dx.doi.org/10.1016/j.tics.2013.03.003CrossrefGoogle Scholar

  • [44] Bostan A.C., Strick P.L., The cerebellum and basal ganglia are interconnected, Neuropsychol. Rev., 2010, 20, 261–270 http://dx.doi.org/10.1007/s11065-010-9143-9CrossrefGoogle Scholar

  • [45] Teune T.M., van der Burg J., van der Moer J., Voogd J., Ruigrok T.J., Topography of cerebellar nuclear projections to the brain stem in the rat, Prog. Brain Res., 2000, 124, 141–172 http://dx.doi.org/10.1016/S0079-6123(00)24014-4CrossrefGoogle Scholar

  • [46] Perciavalle V., Apps R., Bracha V., Delgado-Garcia J.M., Gibson A.R., Leggio M., et al., Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion, Cerebellum, 2013, 12, 738–757 http://dx.doi.org/10.1007/s12311-013-0464-0CrossrefGoogle Scholar

  • [47] Bracha V., Kolb F.P., Irwin K.B., Bloedel J.R., Inactivation of interposed nuclei in the cat: classically conditioned withdrawal reflexes, voluntary limb movements and the action primitive hypothesis, Exp. Brain Res., 1999, 126, 77–92 http://dx.doi.org/10.1007/s002210050718CrossrefGoogle Scholar

  • [48] Martin J.H., Cooper S.E., Hacking A., Ghez C., Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control, J. Neurophysiol., 2000, 83, 1886–1899 Google Scholar

  • [49] Holstege G., Blok B.F., Ralston D.D., Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey, Neurosci. Lett., 1988, 95, 97–101 http://dx.doi.org/10.1016/0304-3940(88)90639-8CrossrefGoogle Scholar

  • [50] Fujito Y., Aoki M., Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat, Exp. Brain Res., 1995, 105, 181–190 Google Scholar

  • [51] Robinson F.R., Houk J.C., Gibson A.R., Limb specific connections of the cat magnocellular red nucleus, J. Comp. Neurol., 1987, 257, 553–577 http://dx.doi.org/10.1002/cne.902570406CrossrefGoogle Scholar

  • [52] Gibson A.R., Horn K.M., Stein J.F., Van Kan P.L., Activity of interpositus neurons during a visually guided reach, Can. J. Physiol. Pharmacol., 1996, 74, 499–512 http://dx.doi.org/10.1139/y96-039CrossrefGoogle Scholar

  • [53] Thach W.T., Goodkin H.P., Keating J.G., The cerebellum and the adaptive coordination of movement, Annu. Rev. Neurosci., 1992, 15, 403–442 http://dx.doi.org/10.1146/annurev.ne.15.030192.002155CrossrefGoogle Scholar

  • [54] Mason C.R., Miller L.E., Baker J.F., Houk J.C., Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations, J. Neurophysiol., 1998, 79, 537–554 Google Scholar

  • [55] Pong M., Horn K.M., Gibson A.R., Spinal projections of the cat parvicellular red nucleus, J. Neurophysiol., 2002, 87, 453–468 Google Scholar

  • [56] Morcuende S., Delgado-Garcia J.M., Ugolini G., Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat, J. Neurosci., 2002, 22, 8808–8818 Google Scholar

  • [57] Satoh Y., Yajima E., Ishizuka K., Nagamine Y., Iwasaki S., Modulation of two types of jaw-opening reflex by stimulation of the red nucleus, Brain Res. Bull., 2013, 97, 24–31 http://dx.doi.org/10.1016/j.brainresbull.2013.05.007CrossrefGoogle Scholar

  • [58] Pierrot-Deseilligny E., Burke D., The circuitry of the human spinal cord. Its role in motor control and movement disorders, Cambridge University Press, Cambridge, UK, 2005 http://dx.doi.org/10.1017/CBO9780511545047CrossrefGoogle Scholar

  • [59] Alstermark B., Lundberg A., Sasaki S., Integration in descending motor pathways controlling the forelimb in the cat. 11. Inhibitory pathways from higher motor centres and forelimb afferents to C3-C4 propriospinal neurones, Exp. Brain Res., 1984, 56, 293–307 http://dx.doi.org/10.1007/BF00236285CrossrefGoogle Scholar

  • [60] Alstermark B., Lundberg A., Sasaki S., Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3-C4 propriospinal neurones, Exp. Brain Res., 1984, 56, 279–292 http://dx.doi.org/10.1007/BF00236284CrossrefGoogle Scholar

  • [61] Alstermark B., Isa T., Circuits for skilled reaching and grasping, Annu. Rev. Neurosci., 2012, 35, 559–578 http://dx.doi.org/10.1146/annurev-neuro-062111-150527CrossrefGoogle Scholar

  • [62] Alstermark B., Gorska T., Johannisson T., Lundberg A., Hypermetria in forelimb target-reaching after interruption of the inhibitory pathway from forelimb afferents to C3-C4 propriospinal neurones, Neurosci. Res., 1986, 3, 457–461 http://dx.doi.org/10.1016/0168-0102(86)90038-6CrossrefGoogle Scholar

  • [63] Iglesias C., Marchand-Pauvert V., Lourenco G., Burke D., Pierrot-Deseilligny E., Task-related changes in propriospinal excitation from hand muscles to human flexor carpi radialis motoneurones, J. Physiol., 2007, 582, 1361–1379 http://dx.doi.org/10.1113/jphysiol.2007.133199CrossrefGoogle Scholar

  • [64] Roberts L.V., Stinear C.M., Lewis G.N., Byblow W.D., Task-dependent modulation of propriospinal inputs to human shoulder, J. Neurophysiol., 2008, 100, 2109–2114 http://dx.doi.org/10.1152/jn.90786.2008CrossrefGoogle Scholar

  • [65] Giboin L.S., Lackmy-Vallee A., Burke D., Marchand-Pauvert V., Enhanced propriospinal excitation from hand muscles to wrist flexors during reach-to-grasp in humans, J. Neurophysiol., 2012, 107, 532–543 http://dx.doi.org/10.1152/jn.00774.2011CrossrefGoogle Scholar

  • [66] Lourenco G., Bleton J.P., Iglesias C., Vidailhet M., Marchand-Pauvert V., Abnormal spinal interactions from hand afferents to forearm muscles in writer’s cramp, Clin. Neurophysiol., 2007, 118, 2215–2226 http://dx.doi.org/10.1016/j.clinph.2007.07.009CrossrefGoogle Scholar

  • [67] Marchand-Pauvert V., Iglesias C., Properties of human spinal interneurones: normal and dystonic control, J. Physiol., 2008, 586, 1247–1256 http://dx.doi.org/10.1113/jphysiol.2007.145904CrossrefGoogle Scholar

  • [68] Alstermark B., Isa T., Tantisira B., Projection from excitatory C3-C4 propriospinal neurones to spinocerebellar and spinoreticular neurones in the C6-Th1 segments of the cat, Neurosci. Res., 1990, 8, 124–130 http://dx.doi.org/10.1016/0168-0102(90)90064-LCrossrefGoogle Scholar

  • [69] Alstermark B., Lindstrom S., Lundberg A., Sybirska E., Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones, Exp. Brain Res., 1981, 42, 282–298 http://dx.doi.org/10.1007/BF00237495CrossrefGoogle Scholar

  • [70] Bradnam L.V., Stinear C.M., Byblow W.D., Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb, J. Neurophysiol., 2011, 105, 2582–2589 http://dx.doi.org/10.1152/jn.01084.2010CrossrefGoogle Scholar

  • [71] Bradnam L.V., Stinear C.M., Byblow W.D., Theta burst stimulation of human primary motor cortex degrades selective muscle activation in the ipsilateral arm, J. Neurophysiol., 2010, 104, 2594–2602 http://dx.doi.org/10.1152/jn.00365.2010CrossrefGoogle Scholar

  • [72] Gerachshenko T., Stinear J.W., Suppression of motor evoked potentials in biceps brachii preceding pronator contraction, Exp. Brain Res., 2007, 183, 531–539 http://dx.doi.org/10.1007/s00221-007-1071-4CrossrefGoogle Scholar

  • [73] McCambridge A.B., Bradnam L.V., Stinear C.M., Byblow W.D., Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm, J. Neurophysiol., 2011, 105, 2937–2942 http://dx.doi.org/10.1152/jn.00171.2011CrossrefGoogle Scholar

  • [74] Apps R., Movement-related gating of climbing fibre input to cerebellar cortical zones, Prog. Neurobiol., 1999, 57, 537–562 http://dx.doi.org/10.1016/S0301-0082(98)00068-9CrossrefGoogle Scholar

  • [75] Leggio M.G., Chiricozzi F.R., Clausi S., Tedesco A.M., Molinari M., The neuropsychological profile of cerebellar damage: the sequencing hypothesis, Cortex, 2011, 47, 137–144 http://dx.doi.org/10.1016/j.cortex.2009.08.011CrossrefGoogle Scholar

  • [76] Galea J.M., Vazquez A., Pasricha N., de Xivry J.J., Celnik P., Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns, Cereb. Cortex, 2011, 21, 1761–1770 http://dx.doi.org/10.1093/cercor/bhq246CrossrefGoogle Scholar

  • [77] Torriero S., Oliveri M., Koch G., Lo Gerfo E., Salerno S., Ferlazzo F., et al., Changes in cerebello-motor connectivity during procedural learning by actual execution and observation, J. Cogn. Neurosci., 2011, 23, 338–348 http://dx.doi.org/10.1162/jocn.2010.21471CrossrefGoogle Scholar

  • [78] Bernard J.A., Seidler R.D., Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis, Front. Hum. Neurosci., 2013, 7, 27 Google Scholar

  • [79] Stamelou M., Edwards M.J., Hallett M., Bhatia K.P., The non-motor syndrome of primary dystonia: clinical and pathophysiological implications, Brain, 2012, 135, 1668–1681 http://dx.doi.org/10.1093/brain/awr224CrossrefGoogle Scholar

  • [80] Wu T., Hallett M., The cerebellum in Parkinson’s disease, Brain, 2013, 136, 696–709 http://dx.doi.org/10.1093/brain/aws360CrossrefGoogle Scholar

  • [81] Torriero S., Oliveri M., Koch G., Caltagirone C., Petrosini L., Interference of left and right cerebellar rTMS with procedural learning, J. Cogn. Neurosci., 2004, 16, 1605–1611 http://dx.doi.org/10.1162/0898929042568488CrossrefGoogle Scholar

  • [82] Torriero S., Oliveri M., Koch G., Lo Gerfo E., Salerno S., Petrosini L., et al., Cortical networks of procedural learning: evidence from cerebellar damage, Neuropsychologia, 2007, 45, 1208–1214 http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.007CrossrefGoogle Scholar

  • [83] Ferrucci R., Brunoni A.R., Parazzini M., Vergari M., Rossi E., Fumagalli M., et al., Modulating human procedural learning by cerebellar transcranial direct current stimulation, Cerebellum, 2013, 12, 485–492 http://dx.doi.org/10.1007/s12311-012-0436-9CrossrefGoogle Scholar

  • [84] Ferrucci R., Marceglia S., Vergari M., Cogiamanian F., Mrakic-Sposta S., Mameli F., et al., Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory, J. Cogn. Neurosci., 2008, 20, 1687–1697 http://dx.doi.org/10.1162/jocn.2008.20112CrossrefGoogle Scholar

  • [85] Boehringer A., Macher K., Dukart J., Villringer A., Pleger B., Cerebellar transcranial direct current stimulation modulates verbal working memory, Brain Stimul., 2013, 6, 649–653 http://dx.doi.org/10.1016/j.brs.2012.10.001CrossrefGoogle Scholar

  • [86] Pope P.A., Miall R.C., Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum, Brain Stimul., 2012, 5, 84–94 http://dx.doi.org/10.1016/j.brs.2012.03.006CrossrefGoogle Scholar

  • [87] Avanzino L., Martino D., Martino I., Pelosin E., Vicario C.M., Bove M., et al., Temporal expectation in focal hand dystonia, Brain, 2013, 136, 444–454 http://dx.doi.org/10.1093/brain/aws328CrossrefGoogle Scholar

  • [88] Meunier S., Russmann H., Shamim E., Lamy J.C., Hallett M., Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation, Eur. J. Neurosci., 2012, 35, 975–986 http://dx.doi.org/10.1111/j.1460-9568.2012.08034.xCrossrefGoogle Scholar

  • [89] Belvisi D., Suppa A., Marsili L., Di Stasio F., Parvez A.K., Agostino R., et al., Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia, Exp. Neurol., 2013, 240, 64–74 http://dx.doi.org/10.1016/j.expneurol.2012.11.003CrossrefGoogle Scholar

  • [90] Hubsch C., Roze E., Popa T., Russo M., Balachandran A., Pradeep S., et al., Defective cerebellar control of cortical plasticity in writer’s cramp, Brain, 2013, 136, 2050–2062 http://dx.doi.org/10.1093/brain/awt147CrossrefGoogle Scholar

  • [91] Fiorio M., Tinazzi M., Aglioti S.M., Selective impairment of hand mental rotation in patients with focal hand dystonia, Brain, 2006, 129, 47–54 http://dx.doi.org/10.1093/brain/awh630CrossrefGoogle Scholar

  • [92] Fiorio M., Tinazzi M., Ionta S., Fiaschi A., Moretto G., Edwards M.J., et al., Mental rotation of body parts and non-corporeal objects in patients with idiopathic cervical dystonia, Neuropsychologia, 2007, 45, 2346–2354 http://dx.doi.org/10.1016/j.neuropsychologia.2007.02.005CrossrefGoogle Scholar

  • [93] Stoodley C.J., Schmahmann J.D., Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing, Cortex, 2010, 46, 831–844 http://dx.doi.org/10.1016/j.cortex.2009.11.008CrossrefGoogle Scholar

  • [94] Stoodley C.J., The cerebellum and cognition: evidence from functional imaging studies, Cerebellum, 2012, 11, 352–365 http://dx.doi.org/10.1007/s12311-011-0260-7CrossrefGoogle Scholar

  • [95] Grimaldi G., Argyropoulos G.P., Boehringer A., Celnik P., Edwards M.J., Ferrucci R., et al., Non-invasive cerebellar stimulation — a consensus paper, Cerebellum, 2013, [Epub ahead of print], doi: 10.1007/s12311-013-0514-7 CrossrefGoogle Scholar

  • [96] Bolognini N., Pascual-Leone A., Fregni F., Using non-invasive brain stimulation to augment motor training-induced plasticity, J. Neuroeng. Rehabil., 2009, 6, 8 http://dx.doi.org/10.1186/1743-0003-6-8Google Scholar

  • [97] Monte-Silva K., Kuo M.F., Liebetanz D., Paulus W., Nitsche M.A., Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS), J. Neurophysiol., 2010, 103, 1735–1740 http://dx.doi.org/10.1152/jn.00924.2009CrossrefGoogle Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2013-12-01


Citation Information: Translational Neuroscience, Volume 4, Issue 4, Pages 458–465, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0143-0.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nan Cheng, Heather M. Wied, James J. Gaul, Lauren E. Doyle, and Stephen G. Reich
Journal of Clinical Movement Disorders, 2018, Volume 5, Number 1

Comments (0)

Please log in or register to comment.
Log in