Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target

Maja Jembrek
  • Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
  • Department of Psychology, Croatian Catholic University, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirjana Babić
  • Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nela Pivac / Patrick Hof
  • Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goran Šimić
  • Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s13380-013-0144-z

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.

Keywords: Alzheimer’s disease; Tau hyperphosphorylation; Glycogen-synthase kinase 3β; Amyloid β; Sphingolipids

  • [1] Hanger D.P., Anderton B.H., Noble W., Tau phosphorylation: the therapeutic challenge for neurodegenerative disease, Trends Mol. Med., 2009, 15, 112–119 CrossrefGoogle Scholar

  • [2] Solfrizzi V., D’Introno A., Colacicco A.M., Capurso C., Del Parigi A., Capurso S., et al., Dietary fatty acids intake: possible role in cognitive decline and dementia, Exp. Gerontol., 2005, 40, 257–270 CrossrefGoogle Scholar

  • [3] Takechi R., Galloway S., Pallebage-Gamarallage M.M., Lam V., Mamo J.C., Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk, Prog. Lipid Res., 2010, 49, 159–170 CrossrefGoogle Scholar

  • [4] Roher A.E., Weiss N., Kokjohn T.A., Kuo Y.M., Kalback W., Anthony J., et al., Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease, Biochemistry, 2002, 41, 11080–11090 CrossrefGoogle Scholar

  • [5] Presečki P., Mück-Šeler D., Mimica N., Pivac N., Mustapić M., Stipčević T., et al., Serum Lipid Levels in Patients with Alzheimer’s Disease, 2011, Coll. Antropol., 35, Suppl. 1, 115–120 Google Scholar

  • [6] Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y.-C., Zaidi M.S., Wisniewski H.M., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem., 1986, 6084–6089 Google Scholar

  • [7] Blennow K., de Leon M.J., Zetterberg H., Alzheimer’s disease, Lancet, 2006, 368, 387–403 Google Scholar

  • [8] Gouras G.K., Tampellini D., Takahashi R.H., Capetillo-Zarate E., Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease, Acta Neuropathol., 2010, 119, 523–541 CrossrefGoogle Scholar

  • [9] Šimić G., Gnjidić M., Kostović I., Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease, Period. Biol., 1998, 100, 165–173 Google Scholar

  • [10] Brandt R., Hundelt M., Shahani N., Tau alteration and neuronal degeneration in tauopathies: mechanisms and models, Biochim. Biophys. Acta, 2005, 1739, 331–354 CrossrefGoogle Scholar

  • [11] Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to β-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369 CrossrefGoogle Scholar

  • [12] Resende R., Ferreiro E., Pereira C., Resende Oliveira C., ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation, J. Neurosci. Res., 2008, 86, 2091–2099 CrossrefGoogle Scholar

  • [13] Huang H.C., Jiang Z.F., Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease, J. Alzheimers Dis., 2009, 16, 15–27 Google Scholar

  • [14] Zhang Z., Zhao R., Qi J., Wen S., Tang Y., Wang D., Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons, J. Neurosci. Res., 2011, 89, 437–447 CrossrefGoogle Scholar

  • [15] Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J., Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration, Proc. Natl. Acad. Sci. USA, 2011, 108, 5819–5824 CrossrefGoogle Scholar

  • [16] Chabrier M.A., Blurton-Jones M., Agazaryan A.A., Nerhus J.L., Martinez-Coria H., LaFerla F.M., Soluble Aβ promotes wild-type tau pathology in vivo, J. Neurosci., 2012, 32, 17345–17350 CrossrefGoogle Scholar

  • [17] McKee A.C., Carreras I., Hossain L., Ryu H., Klein W.L., Oddo S., et al., Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice, Brain Res., 2008, 1207, 225–236 CrossrefGoogle Scholar

  • [18] Lanzillotta A., Sarnico I., Benarese M., Branca C., Baiguera C., Hutter-Paier B., et al., The γ-secretase modulator CHF5074 reduces the accumulation of native hyperphosphorylated tau in a transgenic mouse model of Alzheimer’s disease, J. Mol. Neurosci., 2011, 45, 22–31 Google Scholar

  • [19] Hernandez P., Lee G., Sjoberg M., Maccioni R.B., Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: involvement of lipid rafts, J. Alzheimers Dis., 2009, 16, 149–156 Google Scholar

  • [20] Kawarabayashi T., Shoji M., Younkin L.H., Wen-Lang L., Dickson D.W., Murakami T., et al., Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease, J. Neurosci., 2004, 24,15, 3801–3809 Google Scholar

  • [21] Grimm M.O.W., Rothhaar T.L., Hartmann T., The role of APP proteolytic processing in lipid metabolism, Exp. Brain Res., 2012, 217, 365–375 Google Scholar

  • [22] Aronov S., Aranda G., Behar L., Ginzburg I., Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules, J. Cell Sci., 2002, 115, 3817–3827 CrossrefGoogle Scholar

  • [23] Esmaeli-Azad B., McCarty J.H., Feinstein S.C., Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability, J. Cell Sci., 1994, 107, 869–879 Google Scholar

  • [24] Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P.R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol. Appl. Neurobiol., 2009, 35, 532–554 CrossrefGoogle Scholar

  • [25] Takuma H., Arawaka S., Mori H., Isoforms changes of tau protein during development in various species, Dev. Brain Res., 2003, 142, 121–127 CrossrefGoogle Scholar

  • [26] Deshpande A., Win K.M., Busciglio J., Tau isoform expression and regulation in human cortical neurons, FASEB J., 2008, 22, 2357–2367 CrossrefGoogle Scholar

  • [27] Jovanov-Milošević N., Petrović D., Sedmak G., Vukšić M., Hof P.R., Šimić G., Human fetal tau protein isoform: possibilities for Alzheimer’s disease treatment, Int. J. Biochem. Cell. Biol., 2012, 44, 1290–1294 CrossrefGoogle Scholar

  • [28] Lee G., Neve R.L., Kosik K.S., The microtubule binding domain of tau protein, Neuron, 1989, 2, 1615–1624 CrossrefGoogle Scholar

  • [29] Buée L., Bussière T., Buée-Scherrer V., Delacourte A., Hof P.R., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain Res. Rev., 2000, 33, 95–130 CrossrefGoogle Scholar

  • [30] Ballatore C., Lee V.M., Trojanowski J.Q., Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 2007, 8, 663–672 CrossrefGoogle Scholar

  • [31] Adams S.J., DeTure M.A., McBride M., Dickson D.W., Petrucelli L., Three repeat isoforms of tau inhibit assembly of four repeat tau filaments, PLoS One, 2010, 5, e10810 Google Scholar

  • [32] Johnson G.V., Stoothoff W.H., Tau phosphorylation in neuronal cell function and dysfunction, J. Cell Sci., 2004, 117, 5721–5729 CrossrefGoogle Scholar

  • [33] Iqbal K., Liu F., Gong C.X., Grundke-Iqbal I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 2010, 7, 656–664 CrossrefGoogle Scholar

  • [34] Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Titani K., et al., Proline-directed and non-proline-directed phosphorylation of PHF-tau, J. Biol. Chem., 1995, 270, 823–829 Google Scholar

  • [35] Wang J.Z., Xia Y.Y., Grundke-Iqbal I., Iqbal K., Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration, J. Alzheimers Dis., 2013, Suppl 1, S123–S139 Google Scholar

  • [36] Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110 CrossrefGoogle Scholar

  • [37] Jenkins S.M., Johnson G.V., Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols, J. Neurochem., 1999, 73, 1843–1850 Google Scholar

  • [38] Cho J.-H., Johnson G.V.W., Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules, J. Neurochem., 2004, 88, 349–358 Google Scholar

  • [39] Alonso A.D., Di Clerico J., Li B., Corbo C.P., Alaniz M.E., Grundke-Iqbal I., et al., Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration, J. Biol. Chem., 2010, 285, 30851–30860 Google Scholar

  • [40] Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918 Google Scholar

  • [41] Alonso A.C, Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928 CrossrefGoogle Scholar

  • [42] Kimura T., Ono T., Takamatsu J., Yamamoto H., Ikegami K., Kondo A., et al., Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments, Dementia, 1996, 7, 177–181 Google Scholar

  • [43] Augustinack J.C., Schneider A., Mandelkow E.-M., Hyman B.T., Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease, Acta Neuropathol., 2002, 103, 26–35 CrossrefGoogle Scholar

  • [44] Arnold S.E., Hyman B.T., Flory J., Damasio A.R., Van Hoesen G.W., The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cereb. Cortex, 1991, 1, 103–116 CrossrefGoogle Scholar

  • [45] Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259 CrossrefGoogle Scholar

  • [46] Šimić G., Kostović I., Winblad B., Bogdanović N., Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease, J. Comp. Neurol., 1997, 379, 482–494 Google Scholar

  • [47] Šimić G., Bexheti S., Kelović Z., Kos M., Grbić K., Hof P.R., et al., Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex, Neuroscience, 2005, 130, 911–25 CrossrefGoogle Scholar

  • [48] Braak H., Thal D.R., Ghebremedhin E., Del Tredici K., Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years, J. Neuropathol. Exp. Neurol., 2011, 70, 960–969 Google Scholar

  • [49] Watanabe A., Hasegawa M., Suzuki M., Takio K., Morishima-Kawashima M., Titani K., et al., In vivo phosphorylation sites in fetal and adult rat tau, J. Biol. Chem., 1993, 268, 25712–25717 Google Scholar

  • [50] Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927 Google Scholar

  • [51] Ferrer I., Gomez-Isla T., Puig B., Freixes M., Ribé E., Dalfó E., et al., Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies, Curr. Alzheimer Res., 2005, 2, 3–18 CrossrefGoogle Scholar

  • [52] Michel G., Mercken M., Murayama M., Noguchi K., Ishiguro K., Imahori K., et al., Characterization of tau phosphorylation in glycogen synthase kinase-3β and cyclin dependent kinase-5 activator (p23) transfected cells, Biochim. Biophys. Acta, 1998, 1380, 177–182 Google Scholar

  • [53] Maccioni R.B., Otth C., Concha I.I., Muñoz J.P., The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology, Eur. J. Biochem., 2001, 268, 1518–1527 Google Scholar

  • [54] Li G., Yin H., Kuret J., Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules, J. Biol. Chem., 2004, 279, 15938–15945 Google Scholar

  • [55] Lebouvier T., Scales T.M., Williamson R., Noble W., Duyckaerts C., Hanger D.P et al., The microtubule-associated protein tau is also phosphorylated on tyrosine, J. Alzheimers Dis., 2009, 18, 1–9 Google Scholar

  • [56] Cai Z., Yan L.-J., Li K., Quazi S.H., Zhao B., Roles of AMP-activated protein kinase in Alzheimer’s disease, Neuromol. Med., 2012, 14, 1–14 CrossrefGoogle Scholar

  • [57] Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Yardin C., et al., Tau protein kinases: involvement in Alzheimer’s disease, Ageing Res. Rev., 2013, 12, 289–309 CrossrefGoogle Scholar

  • [58] Martin L., Magnaudeix A., Esclaire F., Yardin C., Terro F., Inhibition of glycogen synthase kinase-3β downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A, Brain Res., 2009, 1252, 66–75 CrossrefGoogle Scholar

  • [59] Matsuo E.S., Shin R.W., Billingsley M.L., Van de Voorde A., O’Connor M., Trojanowski J.Q., et al., Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau, Neuron, 1994, 13, 989–1002 CrossrefGoogle Scholar

  • [60] Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Terro F., Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A, Ageing Res Rev., 2013, 12, 39–49 CrossrefGoogle Scholar

  • [61] Yamaguchi H., Ishiguro K., Uchida T., Takashima A., Lemere C.A., Imahori K., Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 β and cyclin-dependent kinase 5, a component of TPK II, Acta Neuropathol., 1996, 92, 232–241 Google Scholar

  • [62] Pei J.J., Braak E., Braak H., Grundke-Iqbal I., Iqbal K., Winblad B., et al., Distribution of active glycogen synthase kinase 3β (GSK-3 β) in brains staged for Alzheimer disease neurofibrillary changes, J. Neuropathol. Exp. Neurol., 1999, 58, 1010–1019 CrossrefGoogle Scholar

  • [63] Leroy K., Yilmaz Z., Brion J.P., Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration, Neuropathol. Appl. Neurobiol., 2007, 33, 43–55 Google Scholar

  • [64] Phiel C.J., Wilson C.A., Lee V.M., Klein P.S., GSK-3α regulates production of Alzheimer’s disease amyloid-beta peptides, Nature, 2003, 423, 435–439 Google Scholar

  • [65] Wagner U., Utton M., Gallo J.-M., Miller C.C.J., Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation, J. Cell Sci., 1996, 109, 1537–1543 Google Scholar

  • [66] Muñoz-Montaño J.R., Moreno F.J., Avila J., Diaz-Nido J., Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons, FEBS Lett., 1997, 411, 183–188 Google Scholar

  • [67] Cuchillo-Ibanez I., Seereeram A., Byers H.L., Leung K.Y., Ward M.A., Anderton B.H., et al., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J., 2008, 22, 3186–3195 CrossrefGoogle Scholar

  • [68] Li T., Hawkes C., Qureshi H.Y., Kar S., Paudel H.K., Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau sitespecifically for glycogen synthase kinase 3β, Biochemistry, 2006, 45, 3134–3145 CrossrefGoogle Scholar

  • [69] Terwel D., Muyllaert D., Dewachter I., Borghgraef P., Croes S., Devijver H., et al., Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice, Am. J. Pathol., 2008, 172, 786–798 Google Scholar

  • [70] Noble W., Olm V., Takata K., Casey E., Mary O., Meyerson J., et al., Cdk5 is a key factor in tau aggregation and tangle formation in vivo, Neuron, 2003, 38, 555–565 CrossrefGoogle Scholar

  • [71] Rankin C.A., Sun Q., Gamblin T.C., Tau phosphorylation by GSK-3β promotes tangle-like filament morphology, Mol. Neurodeg., 2007, 2, 12 CrossrefGoogle Scholar

  • [72] Lee C.W., Lau K.F., Miller C.C., Shaw P.C., Glycogen synthase kinase-3β-mediated tau phosphorylation in cultured cell lines, Neuroreport, 2003, 14, 257–260 CrossrefGoogle Scholar

  • [73] Liu S.J., Zhang A.H., Li H.L., Wang Q., Deng H.M., Netzer W.J., et al., Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory, J. Neurochem., 2003, 87, 1333–1344 CrossrefGoogle Scholar

  • [74] Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., et al., Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing, Biochemistry, 2004, 43, 6899–6908 CrossrefGoogle Scholar

  • [75] Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., et al., Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau, Proc. Natl. Acad. Sci. USA, 1998, 95, 9637–9641 Google Scholar

  • [76] Metcalfe M.J., Figueiredo-Pereira M.E., Relationship between tau pathology and neuroinflammation in Alzheimer’s disease, Mt. Sinai J. Med., 2010, 77, 50–58 CrossrefGoogle Scholar

  • [77] Parr C., Carzaniga R., Gentleman S.M., Van Leuven F., Walter J., Sastre M., Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein, Mol. Cell. Biol., 2012, 32, 4410–4418 CrossrefGoogle Scholar

  • [78] Noble W., Planel E., Zehr C., Olm V., Meyerson J., Suleman F., et al., Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo, Proc. Natl. Acad. Sci. USA, 2005, 102, 6990–6995 CrossrefGoogle Scholar

  • [79] Zhao L., Wang F., Gui B., Hua F., Qian Y., Prophylactic lithium alleviates postoperative cognition impairment by phosphorylating hippocampal glycogen synthase kinase-3β (Ser9) in aged rats, Exp. Gerontol., 2011, 46, 1031–1036 CrossrefGoogle Scholar

  • [80] Caccamo A., Oddo S., Tran L.X., LaFerla F.M., Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles, Am. J. Pathol., 2007, 170, 1669–1675 CrossrefGoogle Scholar

  • [81] Serenó L., Coma M., Rodríguez M., Sánchez-Ferrer P., Sánchez M.B., Gich I., et al., A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo, Neurobiol. Dis., 2009, 35, 359–367 CrossrefGoogle Scholar

  • [82] Medina M., Castro A., Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic, Curr. Opin. Drug Disc. Dev., 2008, 11, 533–543 Google Scholar

  • [83] Kramer T., Schmidt B., Lo Monte F., Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models, Int. J. Alzheimers Dis., 2012, 381029 Google Scholar

  • [84] Fumagalli F., Racagni G., Riva M.A., The expanding role of BDNF: a therapeutic target for Alzheimer’s disease?, Pharmacogenomics J., 2006, 6, 8–15 CrossrefGoogle Scholar

  • [85] Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Müller F.J., Loring J.F., et al., Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease, Proc. Natl. Acad. Sci. USA, 2009, 106, 13594–13599 CrossrefGoogle Scholar

  • [86] Elliott E., Atlas R., Lange A., Ginzburg I., Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3Kinase signalling mechanism, Eur. J. Pharmacol., 2005, 22, 1081–1089 Google Scholar

  • [87] Tong L., Balazs R., Thornton P.L., Cotman C.W., β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons, J. Neurosci., 2004, 24, 6799–6809 CrossrefGoogle Scholar

  • [88] Magrané J., Rosen K.M., Smith R.C., Walsh K., Gouras G.K., Querfurth H.W., Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response, J. Neurosci., 2005, 25, 10960–10969 CrossrefGoogle Scholar

  • [89] Baki L., Shioi J., Wen P., Shao Z., Schwarzman A., Gama-Sosa M., et al., PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations, EMBO J., 2004, 23, 2586–2596 Google Scholar

  • [90] Jana A., Hogan E.L., Pahan K., Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death, J. Neurol. Sci., 2009, 278, 5–15 CrossrefGoogle Scholar

  • [91] Ben-David O., Futerman A.H., The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases, Neuromolecular. Med., 2010, 12, 341–350 Google Scholar

  • [92] Rao R.P., Vaidyanathan N., Rengasamy M., Oommen A.M., Somaiya N., Jagannath M.R., Sphingolipid metabolic pathway: an overview of major roles played in human diseases, J. Lipids, 2013, 178910 Google Scholar

  • [93] Haughey N.J., Bandaru V.V., Bae M., Mattson M.P., Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis, Biochim. Biophys. Acta, 2010, 1801, 878–886 CrossrefGoogle Scholar

  • [94] Mielke M.M., Lyketsos C.G., Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets?, Neuromol. Med., 2010, 12, 331–340 CrossrefGoogle Scholar

  • [95] Mielke M.M., Haughey N.J., Could plasma sphingolipids be diagnostic or prognostic biomarkers for Alzheimer’s disease?, Clin. Lipidol., 2012, 7, 525–536 CrossrefGoogle Scholar

  • [96] Gomez-Brouchet A., Pchejetski D., Brizuela L., Garcia V., Altié M.F., Maddelein M.L., et al., Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-β peptide, Mol. Pharmacol., 2007, 72, 341–349 Google Scholar

  • [97] Seyb K.I., Ansar S., Li G., Bean J., Michaelis M.L., Dobrowsky R.T., p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide, J. Mol. Neurosci., 2007, 31, 23–35 CrossrefGoogle Scholar

  • [98] Barth B.M., Gustafson S.J, Kuhn T.B., Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine TNFα, J. Neurosci. Res., 2012, 90, 229–242 CrossrefGoogle Scholar

  • [99] Grösch S., Schiffmann S., Geisslinger G., Chain length-specific properties of ceramides, Prog. Lipid Res., 2012, 51, 50–62 CrossrefGoogle Scholar

  • [100] Katsel P., Li C., Haroutunian V., Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease?, Neurochem. Res., 2007, 32, 845–856 CrossrefGoogle Scholar

  • [101] Tamboli I.Y., Prager K., Barth E., Heneka M., Sandhoff K., Walter J., Inhibition of glycosphingolipid biosynthesis reduces secretion of the β-amyloid precursor protein and amyloid β -peptide, J. Biol. Chem., 2005, 280, 28110–28117 CrossrefGoogle Scholar

  • [102] Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S., Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease, Neurosci. Lett., 2012, 516, 302–305 Google Scholar

  • [103] Mielke M.M., Haughey N.J., Bandaru V.V., Weinberg D.D., Darby E., Zaidi N., et al., Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s disease, J. Alzheimers Dis., 2011, 27, 259–269 Google Scholar

  • [104] Takasugi N., Sasaki T., Suzuki K., Osawa S., Isshiki H., Hori Y., et al., BACE1 activity is modulated by cell-associated sphingosine-1-phosphate, J. Neurosci., 2011, 31, 6850–6857 Google Scholar

  • [105] Yanagisawa K., Odaka A., Suzuki N., Ihara Y., GM1 gangliosidebound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease, Nat. Med., 1995, 1, 1062–1066 Google Scholar

  • [106] Utsumi M., Yamaguchi Y., Sasakawa H., Yamamoto N., Yanagisawa K., Kato K., Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters, Glycoconj. J., 2009, 26, 999–1006 Google Scholar

  • [107] Grimm M.O.W., Zimmer V.C., Lehmann J., Grimm H.S., Hartmann T., The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease, BioMed Res. Int., 2013, 814390 Google Scholar

  • [108] Han X., Holtzman M.D., McKeel D.W. Jr., Kelley J., Morris J.C., Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis, J. Neurochem., 2002, 82, 809–818 CrossrefGoogle Scholar

  • [109] Kawakami F., Yamaguchi A., Suzuki K., Yamamoto T., Ohtsuki K., Biochemical characterization of phospholipids, sulfatide and heparin as potent stimulators for autophosphorylation of GSK-3β and the GSK-3β -mediated phosphorylation of myelin basic protein in vitro, J. Biochem., 2008, 143, 359–367 Google Scholar

  • [110] Mielke M.M., Bandaru V.V., Haughey N.J., Xia J., Fried L.P., Yasar S., et al., Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II, Neurology, 2012, 79, 633–641 CrossrefGoogle Scholar

  • [111] Cutler R.G., Kelly J., Storie K., Pedersen W.A., Tammara A., Hatanpaa K., et al., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2004, 17, 2070–2075 CrossrefGoogle Scholar

  • [112] He X., Huang Y., Li B., Gong C.X., Schuchman E.H., Deregulation of sphingolipid metabolism in Alzheimer’s disease, Neurobiol. Aging, 2010, 31, 398–408 CrossrefGoogle Scholar

  • [113] Filippov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsch W.M., et al., Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases, J. Alzheimers Dis., 2012, 29, 537–547 Google Scholar

  • [114] Toman R.E., Movsesyan V., Murthy S.K., Milstien S., Spiegel S., Faden A.I., Ceramide-induced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis, J. Neurosci. Res., 2002, 68, 323–330 CrossrefGoogle Scholar

  • [115] Zhang X., Wu J., Dou Y., Xia B., Rong W., Rimbach G., et al., Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis, Eur. J. Pharmacol., 2012, 679, 51–59 Google Scholar

  • [116] Ruvolo P.P., Deng X., Ito T., Carr B.K., May W.S., Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem., 1999, 274, 20296–20300 Google Scholar

  • [117] Puglielli L., Ellis B.C., Saunders A.J., Kovacs D.M., Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis, J. Biol. Chem., 2003, 30, 19777–19783 Google Scholar

  • [118] Patil S., Melrose J., Chan C., Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons, Eur. J. Neurosci., 2007, 26, 2131–2141 CrossrefGoogle Scholar

  • [119] Jana A., Pahan K., Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease, J. Biol. Chem., 2004, 279, 51451–51459 Google Scholar

  • [120] Malaplate-Armand C., Florent-Béchard S., Youssef I., Koziel V., Sponne I., Kriem B., et al., Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinaseceramide pathway, Neurobiol. Dis., 2006, 23, 178–189 CrossrefGoogle Scholar

  • [121] Geekiyanage H., Upadhye A., Chan C., Inhibition of serine palmitoyltransfrase reduces Aβ and tau hyperphosphorylation in a murine model: a safe therapeutic strategy for Alzheimer’s disease, Neurobiol. Aging, 2013, 34, 2037–2051 CrossrefGoogle Scholar

  • [122] Jana A., Pahan K., Fibrillar amyloid-β-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease, J. Neurosci., 2010, 30, 12676–12689 CrossrefGoogle Scholar

  • [123] Liu L., Martin R., Chan C., Palmitate-activated astrocytes via serine palmitoyl transferase increase BACE1 in primary neurons by sphingomyelinases, Neurobiol. Aging, 2013, 34, 540–550 Google Scholar

  • [124] Patil S., Sheng L., Masserang A., Chan C., Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons, Neurosci. Lett., 2006, 406, 55–99 Google Scholar

  • [125] Grimm M.O., Grösgen S., Rothhaar T.L., Burg V.K., Hundsdörfer B., Haupenthal V.J., et al., Intracellular APP domain regulates serinepalmitoyl-CoA transferase expression and is affected in Alzheimer’s disease, Int. J. Alzheimers Dis., 2011, 695413 Google Scholar

  • [126] Tsai G.E., Falk W.E., Gunther J., Coyle J.T., Improved cognition in Alzheimer’s disease with short-term D-cycloserine treatment, Am. J. Psychiatry, 1999, 156, 467–469 Google Scholar

  • [127] Mukhopadhyay A., Saddoughi S.A., Song P., Sultan I., Ponnusamy S., Senkal C.E., et al., Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling, FASEB J., 2009, 23, 751–763 CrossrefGoogle Scholar

  • [128] Darios F., Muriel M.P., Khondiker M.E., Brice A., Ruberg M., Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau, J. Neurosci., 2005, 25, 4159–4168 CrossrefGoogle Scholar

  • [129] Pérez M., Hernández F., Lim F., Díaz-Nido J., Avila J., Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model, J. Alzheimers Dis., 2003, 5, 301–308 Google Scholar

  • [130] Nakashima H., Ishihara T., Suguimoto P., Yokota O., Oshima E., Kugo A., et al., Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies, Acta Neuropathol., 2005, 110, 547–556 CrossrefGoogle Scholar

  • [131] Engel T., Goñi-Oliver P., Lucas J.J., Avila J., Hernández F., Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert, J. Neurochem., 2006, 99, 1445–1455 CrossrefGoogle Scholar

  • [132] Rockenstein E., Torrance M., Adame A., Mante M., Bar-on P., Rose J.B., et al., Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation, J. Neurosci., 2007, 27, 1981–1991 CrossrefGoogle Scholar

  • [133] Leroy K., Ando K., Héraud C., Yilmaz Z., Authelet M., Boeynaems J.M., et al., Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology, J. Alzheimers Dis., 2010, 19, 705–719 Google Scholar

  • [134] Onishi T., Iwashita H., Uno Y., Kunitomo J., Saitoh M., Kimura E., et al., A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1, 3, 4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease, J. Neurochem., 2011, 119, 1330–1340 Google Scholar

  • [135] Noh M.Y., Chun K., Kang B.Y., Kim H., Park J.S., Lee H.C., et al., Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-β induced cell model and in a transgenic mouse model of Alzheimer’s disease, Biochem. Biophys. Res. Commun., 2013, 435, 274–281 Google Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2013-12-01


Citation Information: Translational Neuroscience, Volume 4, Issue 4, Pages 466–476, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0144-z.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lígia M. Mesquita, Pedro Mateus, Rui D. V. Fernandes, Olga Iranzo, Vânia André, Filipe Tiago de Oliveira, Carlos Platas-Iglesias, and Rita Delgado
Dalton Trans., 2017, Volume 46, Number 29, Page 9549
[2]
Maja Jazvinšćak Jembrek, Patrick R. Hof, and Goran Šimić
Oxidative Medicine and Cellular Longevity, 2015, Volume 2015, Page 1
[3]
Maja Jazvinšćak Jembrek, Josipa Vlainić, Vedrana Radovanović, Julija Erhardt, and Nada Oršolić
BioMetals, 2014, Volume 27, Number 6, Page 1303

Comments (0)

Please log in or register to comment.
Log in