Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

Investigation of a recombinant SMN protein delivery system to treat spinal muscular atrophy

Ryan Anderton
  • Centre for Neuromuscular and Neurological Disorders, University of Western Australia; Western Australian Neuroscience Research Institute, Perth, Western Australia, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Meloni
  • Centre for Neuromuscular and Neurological Disorders, University of Western Australia; Western Australian Neuroscience Research Institute, Perth, Western Australia, Australia
  • Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Mastaglia
  • Centre for Neuromuscular and Neurological Disorders, University of Western Australia; Western Australian Neuroscience Research Institute, Perth, Western Australia, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sherif Boulos
  • Centre for Neuromuscular and Neurological Disorders, University of Western Australia; Western Australian Neuroscience Research Institute, Perth, Western Australia, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-28 | DOI: https://doi.org/10.2478/s13380-014-0201-2


Spinal muscular atrophy (SMA), the most common genetic cause of infant death, is a neurodegenerative disorder affecting motor neurons. SMA results from a loss in full-length survival of motor neuron (SMN) protein due to deletions/mutations in the SMN1 gene. In this study, we assessed the ability of cell-penetrating peptides (CPP) to deliver recombinant SMN protein to cultured neurons as a prelude for a potential therapeutic to treat SMA. Firstly, we confirmed that E. coli produced recombinant GFP protein fused to TAT (YGRKKRRQRRR; TAT-GFP) transduced rat cortical neurons in a concentration dependent manner. However, due to low yields of recombinant TATSMN protein obtainable from E. coli, we investigated the potential of a modified TAT (TATκ: YARKAARQARA) or R9 (RRRRRRRRR) peptide downstream of the fibronectin (FIB) secretory signal peptide to generate recombinant CPP-fused SMN protein. While U251 cells transduced with an adenoviral vector expressing CMV-FIB-TATκ-SMN secreted recombinant TATκ-SMN protein, we did not detect TATκ-SMN protein transduction of cortical neurons. Further, purified TATκ-SMN was unable to transduce SH-SY5Y cells, nor block apoptosis following LY294002 treatment of these cells. Our findings indicate that TATκ is not a suitable CPP to deliver SMN protein to neurons. Nonetheless, we have developed a novel method to generate full-length recombinant SMN protein using a mammalian expression system, which can be used to explore the application of other CPPs to deliver SMN protein as a treatment for SMA.

Keywords: Spinal muscular atrophy; Recombinant SMN protein; Cell penetrating peptides; TAT; Adenoviral vectors

  • [1] Munsat T.L., Davies K.E., International SMA consortium meeting (26–28 June 1992, Bonn, Germany), Neuromuscul. Disord., 1992, 2, 423–428 http://dx.doi.org/10.1016/S0960-8966(06)80015-5CrossrefGoogle Scholar

  • [2] Lefebvre S., Bürglen L., Reboullet S., Clermont O., Burlet P., Viollet L., et al., Identification and characterization of a spinal muscular atrophydetermining gene, Cell, 1995, 80, 155–165 http://dx.doi.org/10.1016/0092-8674(95)90460-3CrossrefGoogle Scholar

  • [3] Lorson C.L., Hahnen E., Androphy E.J., Wirth B., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy, Proc. Natl. Acad. Sci. USA, 1999, 96, 6307–6311 http://dx.doi.org/10.1073/pnas.96.11.6307CrossrefGoogle Scholar

  • [4] Monani U.R., McPherson J.D., Burghes A.H., Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT), Biochim. Biophys. Acta, 1999, 1445, 330–336 http://dx.doi.org/10.1016/S0167-4781(99)00060-3CrossrefGoogle Scholar

  • [5] Lorson C.L., Strasswimmer J., Yao J.M., Baleja J.D., Hahnen E., Wirth B., et al., SMN oligomerization defect correlates with spinal muscular atrophy severity, Nat. Genet., 1998, 19, 63–66 http://dx.doi.org/10.1038/ng0598-63CrossrefGoogle Scholar

  • [6] Lefebvre S., Burlet P., Liu Q., Bertrandy S., Clermont O., Munnich A., et al., Correlation between severity and SMN protein level in spinal muscular atrophy, Nat. Genet., 1997, 16, 265–269 http://dx.doi.org/10.1038/ng0797-265CrossrefGoogle Scholar

  • [7] Feldkötter M., Schwarzer V., Wirth R., Wienker T.F., Wirth B., Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am. J. Hum. Genet., 2002, 70, 358–368 http://dx.doi.org/10.1086/338627CrossrefGoogle Scholar

  • [8] Foust K.D., Wang X., McGovern V.L., Braun L., Bevan A.K., Haidet A.M., et al., Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN, Nat. Biotechnol., 2010, 28, 271–274 http://dx.doi.org/10.1038/nbt.1610CrossrefWeb of ScienceGoogle Scholar

  • [9] Passini M.A., Bu J., Richards A.M., Kinnecom C., Sardi S.P., Stanek L.M., et al., Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy, Sci. Transl. Med., 2011, 3, 72ra18 http://dx.doi.org/10.1126/scitranslmed.3001777CrossrefWeb of ScienceGoogle Scholar

  • [10] Narver H.L., Kong L., Burnett B.G., Choe D.W., Bosch-Marce M., Taye A.A., et al., Sustained improvement of spinal muscular atrophy mice treated with trichostatin A plus nutrition, Ann. Neurol., 2008, 64, 465–470 http://dx.doi.org/10.1002/ana.21449CrossrefWeb of ScienceGoogle Scholar

  • [11] Lesbordes J.C., Cifuentes-Diaz C., Miroglio A., Joshi V., Bordet T., Kahn A., et al., Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy, Hum. Mol. Genet., 2003, 12, 1233–1239 http://dx.doi.org/10.1093/hmg/ddg143Google Scholar

  • [12] Shababi M., Glascock J., Lorson C.L., Combination of SMN transsplicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy, Hum. Gene Ther., 2011, 22, 135–144 http://dx.doi.org/10.1089/hum.2010.114CrossrefWeb of ScienceGoogle Scholar

  • [13] Grondard C., Biondi O., Armand A.S., Lecolle S., Della Gaspera B., Pariset C., et al., Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse, J. Neurosci., 2005, 25, 7615–7622 http://dx.doi.org/10.1523/JNEUROSCI.1245-05.2005CrossrefGoogle Scholar

  • [14] Anderton R.S., Meloni B.P., Mastaglia F.L., Boulos S., Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein, Mol. Neurobiol., 2013, 47, 821–832 http://dx.doi.org/10.1007/s12035-013-8399-5CrossrefWeb of ScienceGoogle Scholar

  • [15] Francis J.W., Figueiredo D., vanderSpek J.C., Ayala L.M., Kim Y.S., Remington M.P., et al., A survival motor neuron:tetanus toxin fragment C fusion protein for the targeted delivery of SMN protein to neurons, Brain Res., 2004, 995, 84–96 http://dx.doi.org/10.1016/j.brainres.2003.09.063CrossrefGoogle Scholar

  • [16] Fawell S., Seery J., Daikh Y., Moore C., Chen L.L., Pepinsky B., et al., Tat-mediated delivery of heterologous proteins into cells, Proc. Natl. Acad. Sci. USA, 1994, 91, 664–668 http://dx.doi.org/10.1073/pnas.91.2.664CrossrefGoogle Scholar

  • [17] Mitchell D.J., Kim D.T., Steinman L., Fathman C.G., Rothbard J.B., Polyarginine enters cells more efficiently than other polycationic homopolymers, J. Pept. Res., 2000, 56, 318–325 http://dx.doi.org/10.1034/j.1399-3011.2000.00723.xCrossrefGoogle Scholar

  • [18] Cao G., Pei W., Ge H., Liang Q., Luo Y., Sharp F.R., et al., In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis, J. Neurosci., 2002, 22, 5423–5431 Google Scholar

  • [19] Wu S.P., Fu A.L., Wang Y.X., Yu L.P., Jia P.Y., Li Q., et al., A novel therapeutic approach to 6-OHDA-induced Parkinson’s disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase, Biochem. Biophys. Res. Comm., 2006, 346, 1–6 http://dx.doi.org/10.1016/j.bbrc.2006.03.247Google Scholar

  • [20] Meloni B.P., Majda B.T., Knuckey N.W., Establishment of neuronal in vitro models of ischemia in 96-well microtiter strip-plates that result in acute, progressive and delayed neuronal death, Neuroscience, 2001, 108, 17–26 CrossrefGoogle Scholar

  • [21] Anderton R.S., Meloni B.P., Mastaglia F.L., Greene W.K., Boulos S., Survival of motor neuron protein over-expression prevents calpainmediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells, Neuroscience, 2011, 181, 226–233 http://dx.doi.org/10.1016/j.neuroscience.2011.02.032CrossrefGoogle Scholar

  • [22] He T.C., Zhou S., da Costa L.T., Yu J., Kinzler K.W., Vogelstein B., A simplified system for generating recombinant adenoviruses, Proc. Natl. Acad. Sci. USA, 1998, 95, 2509–2514 http://dx.doi.org/10.1073/pnas.95.5.2509CrossrefGoogle Scholar

  • [23] Boulos S., Meloni B.P., Arthur P.G., Bojarski C., Knuckey N.W., Assessment of CMV, RSV and SYN1 promoters and the woodchuck posttranscriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures, Brain Res., 2006, 1102, 27–38 http://dx.doi.org/10.1016/j.brainres.2006.04.089Google Scholar

  • [24] Zeng M., Smith S.K., Siegel F., Shi Z., Van Kampen K.R., Elmets C.A., et al., AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination, Biotechniques, 2001, 31, 260–262 Google Scholar

  • [25] Flinterman M., Farzaneh F., Habib N., Malik F., Gaken J., Tavassoli M., Delivery of therapeutic proteins as secretable TAT fusion products, Mol. Ther., 2009, 17, 334–342 http://dx.doi.org/10.1038/mt.2008.256CrossrefWeb of ScienceGoogle Scholar

  • [26] Boulos S., Meloni B.P., Arthur P.G., Bojarski C., Knuckey N.W., Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury, J. Neurosci. Res., 2007, 85, 3089–3097 http://dx.doi.org/10.1002/jnr.21429Web of ScienceCrossrefGoogle Scholar

  • [27] Koutsokeras A., Kabouridis P.S., Secretion and uptake of TAT-fusion proteins produced by engineered mammalian cells, Biochim. Biophys. Acta, 2009, 1790, 147–153 http://dx.doi.org/10.1016/j.bbagen.2008.11.005CrossrefWeb of ScienceGoogle Scholar

  • [28] La Bella V., Kallenbach S., Pettmann B., Post-translational modifications in the survival motor neuron protein, Biochem. Biophys. Res. Comm., 2004, 324, 288–293 http://dx.doi.org/10.1016/j.bbrc.2004.09.057CrossrefGoogle Scholar

  • [29] Lorson C.L., Rindt H., Shababi M., Spinal muscular atrophy: mechanisms and therapeutic strategies, Hum. Mol. Genet., 2010, 19, R111–118 http://dx.doi.org/10.1093/hmg/ddq147Web of ScienceCrossrefGoogle Scholar

  • [30] Park G.H., Kariya S., Monani U.R., Spinal muscular atrophy: new and emerging insights from model mice, Curr. Neurol. Neurosci. Rep., 2010, 10, 108–117 http://dx.doi.org/10.1007/s11910-010-0095-5Web of ScienceCrossrefGoogle Scholar

  • [31] Mercuri E., Bertini E., Messina S., Solari A., D’Amico A., Angelozzi C., et al., Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy, Neurology, 2007, 68, 51–55 CrossrefGoogle Scholar

  • [32] Swoboda K.J., Scott C.B., Crawford T.O., Simard L.R., Reyna S.P., Krosschell K.J., et al., SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy, PLoS One, 2010, 5, e12140 http://dx.doi.org/10.1371/journal.pone.0012140CrossrefGoogle Scholar

  • [33] Schwarze S.R., Ho A., Vocero-Akbani A., Dowdy S.F., In vivo protein transduction: delivery of a biologically active protein into the mouse, Science, 1999, 285, 1569–1572 http://dx.doi.org/10.1126/science.285.5433.1569CrossrefGoogle Scholar

  • [34] Kwon H.Y., Eum W.S., Jang H.W., Kang J.H., Ryu J., Ryong Lee B., et al., Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells, FEBS Lett., 2000, 485, 163–167 http://dx.doi.org/10.1016/S0014-5793(00)02215-8CrossrefGoogle Scholar

  • [35] Park J., Ryu J., Kim K.A., Lee H.J., Bahn J.H., Han K., et al., Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells, J. Gen. Virol., 2002, 83, 1173–1181 Google Scholar

  • [36] Kelly R.B., Pathways of protein secretion in eukaryotes, Science, 1985, 230, 25–32 http://dx.doi.org/10.1126/science.2994224CrossrefGoogle Scholar

  • [37] Haberman R.P., Samulski R.J., McCown T.J., Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion, Nat. Med., 2003, 9, 1076–1080 http://dx.doi.org/10.1038/nm901CrossrefGoogle Scholar

  • [38] McCown T.J., Adeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivo, Mol. Ther., 2006, 14, 63–68 http://dx.doi.org/10.1016/j.ymthe.2006.04.004CrossrefGoogle Scholar

  • [39] Foti S.B., Samulski R.J., McCown T.J., Delivering multiple gene products in the brain from a single adeno-associated virus vector, Gene Ther., 2009, 16, 1314–1319 http://dx.doi.org/10.1038/gt.2009.106CrossrefWeb of ScienceGoogle Scholar

  • [40] Madinger C.L., Collins K., Fields L.G., Taron C.H., Benner J.S., Constitutive secretion in Tetrahymena thermophila, Eukaryot. Cell, 2010, 9, 674–681 http://dx.doi.org/10.1128/EC.00024-10CrossrefGoogle Scholar

  • [41] Cameron A., Appel J., Houghten R.A., Lindberg I., Polyarginines are potent furin inhibitors, J. Biol. Chem., 2000, 275, 36741–36749 http://dx.doi.org/10.1074/jbc.M003848200CrossrefGoogle Scholar

  • [42] Anderton R.S., Price L.L., Turner B.J., Meloni B.P., Mitrpant C., Mastaglia F.L., et al., Co-regulation of survival of motor neuron and Bcl-xL expression: implications for neuroprotection in spinal muscular atrophy, Neuroscience, 2012, 220, 228–236 http://dx.doi.org/10.1016/j.neuroscience.2012.06.042CrossrefGoogle Scholar

About the article

Published Online: 2014-03-28

Published in Print: 2014-03-01

Citation Information: Translational Neuroscience, Volume 5, Issue 1, Pages 8–16, ISSN (Online) 2081-6936, DOI: https://doi.org/10.2478/s13380-014-0201-2.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ryan S. Anderton, Lauren Hill, Rhiannon Morris, Frank L. Mastaglia, Wayne Greene, and Sherif Boulos
Advances in Parkinson's Disease, 2017, Volume 06, Number 04, Page 113
Filip Bartnicki, Piotr Bonarek, Ewa Kowalska, and Wojciech Strzalka
Scientific Reports, 2017, Volume 7, Number 1

Comments (0)

Please log in or register to comment.
Log in