Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Cortical surface complexity in a population-based normative sample

Brynn Dombroski / Matthew Nitzken / Ahmed Elnakib / Fahmi Khalifa / Andrew Switala / Ayman El-Baz / Manuel Casanova
Published Online: 2014-03-28 | DOI: https://doi.org/10.2478/s13380-014-0202-1

Abstract

MRI studies on abnormal brain development are dependent on the quality, quantity, and type of normative development data available for comparison. Limitations affecting previous studies on normative development include small sample sizes, lack of demographic representation, heterogeneous subject populations, and inadequate longitudinal data. The National Institutes of Health Pediatric MRI Data Repository (NIHPD) for normative development was designed to address the aforementioned issues in reliability measures of control subjects for comparison studies. The subjects were recruited from six Pediatric Study Centers nationwide to create the largest, non-biased, longitudinal database of the developing brain. Using the NIHPD, we applied a 3D shape analysis method involving spherical harmonics to identify the cortical surface complexity of 396 subjects (210 female; 186 male) between the ages of 4.8 y and 22.3 y. MRI data had been obtained at one, two, or three time points approximately two years apart. A total of 144 participants (79 female; 65 male) provided MRI data from all time points. Our results confirm a direct correlation between cortical complexity and age in both males and females. Additionally, within the examined age range, females displayed consistently and significantly greater cortical complexity than males. Findings suggest that the underlying neural circuitry within male and female brains is different, possibly explaining observations of sexual dimorphism in social interaction, communication, and higher cognitive processes.

Keywords: Brain/growth & development; Cerebral cortex; Spherical harmonics

  • [1] Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A.P., et al., Brain development during childhood and adolescence: a longitudinal MRI study, Nat. Neurosci., 1999, 2, 861–863 http://dx.doi.org/10.1038/13158CrossrefGoogle Scholar

  • [2] Luders E., Narr K.L., Thompson P.M., Rex D.E., Jäncke L., Steinmetz H., et al., Gender differences in cortical complexity, Nat. Neurosci., 2004, 7, 799–800 http://dx.doi.org/10.1038/nn1277CrossrefGoogle Scholar

  • [3] Jackson J.D., Classical electrodynamics, 2nd edition, Wiley, New York, 1975 Google Scholar

  • [4] Chung M.K., Hartley R., Dalton K.M., Davidson R.J., Encoding cortical surface by spherical harmonics, Stat. Sinica, 2008, 18, 1269–1291 Google Scholar

  • [5] Talairach J., Szikla G., Atlas d’anatomie stéréotaxique du télencéphale: études anatomo-radiologiques, Masson, Paris, 1967 Google Scholar

  • [6] Talairach J., Tournoux P., Co-planar stereotaxic atlas of the human brain, Thieme Medical, New York, 1988 Google Scholar

  • [7] Brain Development Cooperative Group, Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development, Cereb. Cortex, 2012, 22, 1–12 http://dx.doi.org/10.1093/cercor/bhr018CrossrefGoogle Scholar

  • [8] Keller S.S., Roberts N., Measurement of brain volume using MRI: software, techniques, choices and prerequisites, J. Anthropol. Sci., 2009, 87, 127–151 Google Scholar

  • [9] Yotter R.A., Dahnke R., Thompson P.M., Gaser C., Topological correction of brain surface meshes using spherical harmonics, Hum. Brain Mapp., 2011, 32, 1109–1124 http://dx.doi.org/10.1002/hbm.21095Web of ScienceCrossrefGoogle Scholar

  • [10] Shen L., Farid H., McPeek M.A., Modeling three-dimensional morphological structures using spherical harmonics, Evolution, 2009, 63, 1003–1016 http://dx.doi.org/10.1111/j.1558-5646.2008.00557.xWeb of ScienceCrossrefGoogle Scholar

  • [11] Brain Development Cooperative Group, Evans A.C., The NIH MRI study of normal brain development, Neuroimage, 2006, 30, 184–202 http://dx.doi.org/10.1016/j.neuroimage.2005.09.068CrossrefGoogle Scholar

  • [12] Nitzken M., Casanova M.F., Gimel’farb G.L., Elnakib A., Khalifa F., Switala A.E., et al., 3D shape analysis of the brain cortex with application to autism, IEEE Int. Symp. Biomed. Imaging, 2011, 8, 1847–1850 Google Scholar

  • [13] Fang Q., Boas D.A., Tetrahedral mesh generation from volumetric binary and gray-scale images, IEEE Int. Symp. Biomed. Imaging, 2009, 6, 1142–1145 Google Scholar

  • [14] MacDonald D., Kabani N., Avis D., Evans A.C., Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI, Neuroimage, 2000, 12, 340–356 http://dx.doi.org/10.1006/nimg.1999.0534CrossrefGoogle Scholar

  • [15] Chung M.K., Worsley K.J., Robbins S.M., Paus T., Taylor J., Giedd J.N., et al., Deformation-based surface morphometry applied to gray matter deformation, Neuroimage, 2003, 18, 198–213 http://dx.doi.org/10.1016/S1053-8119(02)00017-4CrossrefGoogle Scholar

  • [16] El-Baz A.S., Casanova M.F., Gimel’farb G.L., Mott M., Switala A.E., Autism diagnostics by 3D texture analysis of cerebral white matter gyrifications, In: Ayache N., Ourselin S., Maeder A.J. (Eds.), Medical image computing and computer-assisted intervention-MICCAI 2007, part II, Springer, New York, 2007 Google Scholar

  • [17] Armstrong E., Schleicher A., Omran H., Curtis M., Zilles K., The ontogeny of human gyrification, Cereb. Cortex, 1995, 5, 56–63 http://dx.doi.org/10.1093/cercor/5.1.56CrossrefGoogle Scholar

  • [18] Yakovlev P.I., Lecours A.R., The myelogenetic cycles of regional maturation of the brain, In: Minkowski A. (Ed.), Regional development of the brain in early life, Blackwell Scientific, Oxford, 1967 Google Scholar

  • [19] Sowell E.R., Thompson P.M., Holmes C.J., Batth R., Jernigan T.L., Toga A.W., Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping, Neuroimage, 1999, 9, 587–597 http://dx.doi.org/10.1006/nimg.1999.0436CrossrefGoogle Scholar

  • [20] Chugani H.T., Phelps M.E., Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography, Science, 1986, 231, 840–843 http://dx.doi.org/10.1126/science.3945811CrossrefGoogle Scholar

  • [21] Gerig G., Styner M., Jones D.W., Weinberger D.R., Lieberman J.A., Shape analysis of brain ventricles using SPHARM, Math. Methods Biomed. Image Anal., 2001, 3, 171–178 Google Scholar

  • [22] Pakkenberg B., Gundersen H.J.G., Neocortical neuron number in humans: effect of sex and age, J. Comp. Neurol., 1997, 384, 312–320 http://dx.doi.org/10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-KCrossrefGoogle Scholar

  • [23] Nopoulos P., Flaum M., O’Leary D., Andreasen N.C., Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging, Psychiatry Res. Neuroimag., 2000, 98, 1–13 http://dx.doi.org/10.1016/S0925-4927(99)00044-XCrossrefGoogle Scholar

  • [24] Luders E., Narr K.L., Thompson P.M., Rex D.E., Woods R.P., DeLuca H., et al., Gender effects on cortical thickness and the influence of scaling, Hum. Brain Mapp., 2006, 27, 314–324 http://dx.doi.org/10.1002/hbm.20187CrossrefGoogle Scholar

  • [25] Thompson P.M., Schwartz C., Lin R.T., Khan A.A., Toga A.W., Threedimensional statistical analysis of sulcal variability in the human brain, J. Neurosci., 1996, 16, 4261–4274 Google Scholar

  • [26] Blanton R.E., Levitt J.G., Thompson P.M., Narr K.L., Capetillo-Cunliffe L., Nobel A., et al., Mapping cortical asymmetry and complexity patterns in normal children, Psychiatry Res. Neuroimag., 2001, 107, 29–43 http://dx.doi.org/10.1016/S0925-4927(01)00091-9CrossrefGoogle Scholar

  • [27] Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., et al., Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. USA, 2004, 101, 8174–8179 http://dx.doi.org/10.1073/pnas.0402680101CrossrefGoogle Scholar

  • [28] Toga A.W., Thompson P.M., Sowell E.R., Mapping brain maturation, Trends Neurosci., 2006, 29, 148–159 http://dx.doi.org/10.1016/j.tins.2006.01.007CrossrefGoogle Scholar

  • [29] Sowell E.R., Trauner D.A., Gamst A., Jernigan T.L., Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study, Dev. Med. Child Neurol., 2002, 44, 4–16 http://dx.doi.org/10.1017/S0012162201001591CrossrefGoogle Scholar

  • [30] De Bellis M.D., Keshavan M.S., Beers S.R., Hall J., Frustaci K., Masalehdan A., et al., Sex differences in brain maturation during childhood and adolescence, Cereb. Cortex, 2001, 11, 552–557 http://dx.doi.org/10.1093/cercor/11.6.552CrossrefGoogle Scholar

  • [31] Lenroot R.K., Giedd J.N., Brain development in children and adolescents: insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev., 2006, 30, 718–729 http://dx.doi.org/10.1016/j.neubiorev.2006.06.001CrossrefGoogle Scholar

  • [32] Lenroot R.K., Gogtay N., Greenstein D.K., Molloy Wells E., Wallace G.L., Clasen L.S., et al., Sexual dimorphism of brain developmental trajectories during childhood and adolescence, Neuroimage, 2007, 36, 1065–1073 http://dx.doi.org/10.1016/j.neuroimage.2007.03.053CrossrefWeb of ScienceGoogle Scholar

  • [33] Giedd J.N., Stockman M., Weddle C., Liverpool M., Alexander-Bloch A., Wallace G.L., et al., Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation, Neuropsychol. Rev., 2010, 20, 349–361 http://dx.doi.org/10.1007/s11065-010-9151-9Web of ScienceCrossrefGoogle Scholar

  • [34] Lombardo M.V., Ashwin E., Auyeung B., Chakrabarti B., Taylor K., Hackett G., et al., Fetal testosterone influences sexually dimorphic gray matter in the human brain, J. Neurosci., 2012, 32, 674–680 http://dx.doi.org/10.1523/JNEUROSCI.4389-11.2012CrossrefGoogle Scholar

  • [35] Raznahan A., Shaw P., Lalonde F., Stockman M., Wallace G.L., Greenstein D., et al., How does your cortex grow?, J. Neurosci., 2011, 31, 7174–7177 http://dx.doi.org/10.1523/JNEUROSCI.0054-11.2011Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-03-28

Published in Print: 2014-03-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.2478/s13380-014-0202-1.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christopher R. Madan and Elizabeth A. Kensinger
Brain Informatics, 2017, Volume 4, Number 2, Page 107

Comments (0)

Please log in or register to comment.
Log in