Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Amyloid imaging in Alzheimer’s disease: a potential new era of personalized medicine?

Antoine Leuzy
  • Translational Neuroimaging Laboratory (TNL), McGill Centre for Studies in Aging (MCSA), Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Alzheimer’s Disease Research Unit, MCSA, Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Zimmer
  • Translational Neuroimaging Laboratory (TNL), McGill Centre for Studies in Aging (MCSA), Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Alzheimer’s Disease Research Unit, MCSA, Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Serge Gauthier
  • Translational Neuroimaging Laboratory (TNL), McGill Centre for Studies in Aging (MCSA), Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro Rosa-Neto
  • Translational Neuroimaging Laboratory (TNL), McGill Centre for Studies in Aging (MCSA), Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Alzheimer’s Disease Research Unit, MCSA, Douglas Mental Health University Institute, Montreal, H4H 1R3, Quebec, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-28 | DOI: https://doi.org/10.2478/s13380-014-0205-y

Abstract

Recent advances along clinical and neuropathological lines, as well as in our ability to detect the deposition of β-amyloid (Aβ) in vivo using positron emission tomography (PET), have helped redefine Alzheimer’s disease (AD) as a dynamic clinicobiological entity. On the basis of these advances, AD is now conceptualized as a continuum comprising asymptomatic, minimally symptomatic, and dementia phases, with detection of brain Aβ — in particular, via PET amyloid imaging — central to the diagnostic process. In this respect, [18F]florbetapir (Amyvid™) and [18F]flutemetamol (Vizamyl™) have recently received approval for clinical use from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), with additional radiofluorinated tracers for detection of Aβ in phase III trials. Recent initiatives such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that Aβ production, oligomerization and aggregation begins many years, possibly decades, before detectable cognitive impairment, with Aβ shown to associate with cognitive decline and conversion to dementia. While personalized medicine has now emerged as a prospect for the field, the recent decision by the Centers for Medicare & Medicaid Services (CMS) — who declined to cover the cost of amyloid PET imaging citing insufficient evidence to support its clinical utility — highlights that such a move may be premature.

Keywords: Alzheimer’s disease; [11C]PIB [18F]florbetapen; [18F]florbetapir; [18F]flutemetamol; [18F]NAV4694; Amyloid cascade hypothesis; Personalized medicine

  • [1] McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M., Clinical diagnosis of Alzheimer’s disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease, Neurology, 1984, 34, 939–94 http://dx.doi.org/10.1212/WNL.34.7.939CrossrefGoogle Scholar

  • [2] Dubois B., Feldman H.H., Jacova C., Cummings J.L., Dekosky S.T., Barberger-Gateau P., et al., Revising the definition of Alzheimer’s disease: a new lexicon, Lancet Neurol., 2010, 9, 1118–1127 http://dx.doi.org/10.1016/S1474-4422(10)70223-4CrossrefGoogle Scholar

  • [3] Dubois B., Feldman H.H., Jacova C., Dekosky S.T., Barberger-Gateau P., Cummings J., et al., Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol., 2007, 6, 734–746 http://dx.doi.org/10.1016/S1474-4422(07)70178-3CrossrefGoogle Scholar

  • [4] Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., et al., Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 280–292 http://dx.doi.org/10.1016/j.jalz.2011.03.003CrossrefGoogle Scholar

  • [5] Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., et al., The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 270–279 http://dx.doi.org/10.1016/j.jalz.2011.03.008CrossrefGoogle Scholar

  • [6] McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269 http://dx.doi.org/10.1016/j.jalz.2011.03.005CrossrefGoogle Scholar

  • [7] Varma A.R., Snowden J.S., Lloyd J.J., Talbot P.R., Mann D.M., Neary D., Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia, J. Neurol. Neurosurg. Psychiatry, 1999, 66, 184–188 http://dx.doi.org/10.1136/jnnp.66.2.184CrossrefGoogle Scholar

  • [8] Kazee A.M., Eskin T.A., Lapham L.W., Gabriel K.R., McDaniel K.D., Hamill R.W., Clinicopathologic correlates in Alzheimer disease: assessment of clinical and pathologic diagnostic criteria, Alzheimer Dis. Assoc. Disord., 1993, 7, 152–164 http://dx.doi.org/10.1097/00002093-199307030-00004CrossrefGoogle Scholar

  • [9] Biomarkers Definitions Working G., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin. Pharmacol. Ther., 2001, 69, 89–95 http://dx.doi.org/10.1067/mcp.2001.113989CrossrefGoogle Scholar

  • [10] Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356 http://dx.doi.org/10.1126/science.1072994CrossrefGoogle Scholar

  • [11] Fagan A.M., Mintun M.A., Shah A.R., Aldea P., Roe C.M., Mach R.H., et al., Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease, EMBO Mol. Med., 2009, 1, 371–380 http://dx.doi.org/10.1002/emmm.200900048CrossrefGoogle Scholar

  • [12] Morris J.C., Roe C.M., Xiong C., Fagan A.M., Goate A.M., Holtzman D.M., et al., APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging, Ann. Neurol., 2010, 67, 122–131 http://dx.doi.org/10.1002/ana.21843CrossrefGoogle Scholar

  • [13] Fagan A.M., Mintun M.A., Mach R.H., Lee S.Y., Dence C.S., Shah A.R., et al., Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans, Ann. Neurol., 2006, 59, 512–519 http://dx.doi.org/10.1002/ana.20730CrossrefGoogle Scholar

  • [14] Koivunen J., Pirttila T., Kemppainen N., Aalto S., Herukka S.K., Jauhianen A.M., et al., PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment, Dement. Geriatr. Cogn. Disord., 2008, 26, 378–383 http://dx.doi.org/10.1159/000163927CrossrefGoogle Scholar

  • [15] Forsberg A., Almkvist O., Engler H., Wall A., Langstrom B., Nordberg A., High PIB retention in Alzheimer’s disease is an early event with complex relationship with CSF biomarkers and functional parameters, Curr. Alzheimer Res., 2010, 7, 56–66 http://dx.doi.org/10.2174/156720510790274446CrossrefGoogle Scholar

  • [16] Landau S.M., Lu M., Joshi A.D., Pontecorvo M., Mintun M.A., Trojanowski J.Q., et al., Comparing positron emission tomography imaging and cerebrospinal fluid measurements of beta-amyloid, Ann. Neurol., 2013, 74, 826–836 http://dx.doi.org/10.1002/ana.23908CrossrefGoogle Scholar

  • [17] Mattsson N., Blennow K., Zetterberg H., Inter-laboratory variation in cerebrospinal fluid biomarkers for Alzheimer’s disease: united we stand, divided we fall, Clin. Chem. Lab. Med., 2010, 48, 603–607 http://dx.doi.org/10.1515/CCLM.2010.131CrossrefGoogle Scholar

  • [18] Nordberg A., Carter S.F., Rinne J., Drzezga A., Brooks D.J., Vandenberghe R., et al., A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease, Eur. J. Nucl. Med. Mol. Imaging, 2013, 40, 104–114 http://dx.doi.org/10.1007/s00259-012-2237-2CrossrefGoogle Scholar

  • [19] Vandenberghe R., Adamczuk K., Dupont P., Laere K.V., Chételat G., Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer’s disease, Neuroimage. Clin., 2013, 2, 497–511 http://dx.doi.org/10.1016/j.nicl.2013.03.014CrossrefGoogle Scholar

  • [20] Cohen A.D., Rabinovici G.D., Mathis C.A., Jagust W.J., Klunk W.E., Ikonomovic M.D., Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta, Adv. Pharmacol., 2012, 64, 27–81 http://dx.doi.org/10.1016/B978-0-12-394816-8.00002-7CrossrefGoogle Scholar

  • [21] Price J.C., Klunk W.E., Lopresti B.J., Lu X., Hoge J.A., Ziolko S.K., et al., Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B, J. Cereb. Blood Flow Metab., 2005, 25, 1528–1547 http://dx.doi.org/10.1038/sj.jcbfm.9600146CrossrefGoogle Scholar

  • [22] Lockhart A., Lamb J.R., Osredkar T., Sue L.I., Joyce J.N., Ye L., et al., PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptiderelated cerebral amyloidosis, Brain, 2007, 130, 2607–2615 http://dx.doi.org/10.1093/brain/awm191CrossrefGoogle Scholar

  • [23] Maezawa I., Hong H.S., Liu R., Wu C.Y., Cheng R.H., Kung M.P., et al., Congo red and thioflavin-T analogs detect Abeta oligomers, J. Neurochem., 2008, 104, 457–468 Google Scholar

  • [24] Kemppainen N.M., Aalto S., Wilson I.A., Nagren K., Helin S., Bruck A., et al., PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment, Neurology, 2007, 68, 1603–1606 http://dx.doi.org/10.1212/01.wnl.0000260969.94695.56CrossrefGoogle Scholar

  • [25] Klunk W.E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D.P., et al., Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B, Ann. Neurol., 2004, 55, 306–319 http://dx.doi.org/10.1002/ana.20009CrossrefGoogle Scholar

  • [26] Forsberg A., Engler H., Almkvist O., Blomquist G., Hagman G., Wall A., et al., PET imaging of amyloid deposition in patients with mild cognitive impairment, Neurobiol. Aging, 2008, 29, 1456–1465 http://dx.doi.org/10.1016/j.neurobiolaging.2007.03.029CrossrefGoogle Scholar

  • [27] Okello A., Koivunen J., Edison P., Archer H.A., Turkheimer F.E., Nagren K., et al., Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study, Neurology, 2009, 73, 754–760 http://dx.doi.org/10.1212/WNL.0b013e3181b23564CrossrefGoogle Scholar

  • [28] Jagust W.J., Bandy D., Chen K., Foster N.L., Landau S.M., Mathis C.A., et al., The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core, Alzheimers Dement., 2010, 6, 221–229 http://dx.doi.org/10.1016/j.jalz.2010.03.003CrossrefGoogle Scholar

  • [29] Resnick S.M., Sojkova J., Amyloid imaging and memory change for prediction of cognitive impairment, Alzheimers Res.Ther., 2011, 3, 3 http://dx.doi.org/10.1186/alzrt62CrossrefGoogle Scholar

  • [30] Rowe C.C., Ellis K.A., Rimajova M., Bourgeat P., Pike K.E., Jones G., et al., Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, Neurobiol. Aging, 2010, 31, 1275–1283 http://dx.doi.org/10.1016/j.neurobiolaging.2010.04.007CrossrefGoogle Scholar

  • [31] Mintun M.A., Larossa G.N., Sheline Y.I., Dence C.S., Lee S.Y., Mach R.H., et al., [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease, Neurology, 2006, 67, 446–452 http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a4CrossrefGoogle Scholar

  • [32] Rowe C.C., Ng S., Ackermann U., Gong S.J., Pike K., Savage G., et al., Imaging beta-amyloid burden in aging and dementia, Neurology, 2007, 68, 1718–1725 http://dx.doi.org/10.1212/01.wnl.0000261919.22630.eaCrossrefGoogle Scholar

  • [33] Ng S.Y., Villemagne V.L., Masters C.L., Rowe C.C., Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh Compound B, Arch. Neurol., 2007, 64, 1140–1144 http://dx.doi.org/10.1001/archneur.64.8.1140CrossrefGoogle Scholar

  • [34] Rabinovici G.D., Furst A.J., O’Neil J.P., Racine C.A., Mormino E.C., Baker S.L., et al., 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration, Neurology, 2007, 68, 1205–1212 http://dx.doi.org/10.1212/01.wnl.0000259035.98480.edCrossrefGoogle Scholar

  • [35] Rowe C.C., Ackerman U., Browne W., Mulligan R., Pike K.L., O’Keefe G., et al., Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism, Lancet Neurol., 2008, 7, 129–135 http://dx.doi.org/10.1016/S1474-4422(08)70001-2CrossrefGoogle Scholar

  • [36] Clark C.M., Pontecorvo M.J., Beach T.G., Bedell B.J., Coleman R.E., Doraiswamy P.M., et al., Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study, Lancet Neurol., 2012, 11, 669–678 http://dx.doi.org/10.1016/S1474-4422(12)70142-4CrossrefGoogle Scholar

  • [37] Wolk D.A., Grachev I.D., Buckley C., Kazi H., Grady M.S., Trojanowski J.Q., et al., Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology, Arch. Neurol., 2011, 68, 1398–1403 http://dx.doi.org/10.1001/archneurol.2011.153CrossrefGoogle Scholar

  • [38] Cselenyi Z., Jonhagen M.E., Forsberg A., Halldin C., Julin P., Schou M., et al., Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand, J. Nucl. Med., 2012, 53, 415–424 http://dx.doi.org/10.2967/jnumed.111.094029CrossrefGoogle Scholar

  • [39] Ikonomovic M.D., Klunk W.E., Abrahamson E.E., Mathis C.A., Price J.C., Tsopelas N.D., et al., Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease, Brain, 2008, 131, 1630–1645 http://dx.doi.org/10.1093/brain/awn016CrossrefGoogle Scholar

  • [40] Clark C.M., Schneider J.A., Bedell B.J., Beach T.G., Bilker W.B., Mintun M.A., et al., Use of florbetapir-PET for imaging beta-amyloid pathology, JAMA, 2011, 305, 275–283 http://dx.doi.org/10.1001/jama.2010.2008CrossrefGoogle Scholar

  • [41] Zimmer E., Parent M., Leuzy A., Rowley J., Cheewakriengkrai L., Shin M., et al., [18F]NAV4694 shows higher binding and wider dynamic range compared with [11C]PiB in Alzheimer’s disease postmortem tissue, Alzheimers Dement., 2013, 9, P22–P23 http://dx.doi.org/10.1016/j.jalz.2013.05.026CrossrefGoogle Scholar

  • [42] Johnson K.A., Minoshima S., Bohnen N.I., Donohoe K.J., Foster N.L., Herscovitch P., et al., Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association, Alzheimers Dement., 2013, 9, e-1–16 http://dx.doi.org/10.1016/j.jalz.2013.01.002CrossrefGoogle Scholar

  • [43] Johnson K.A., Fox N.C., Sperling R.A., Klunk W.E., Brain imaging in Alzheimer disease, Cold Spring Harb. Perspect. Med., 2012, 2, a006213 http://dx.doi.org/10.1101/cshperspect.a006213CrossrefGoogle Scholar

  • [44] Olson S., Institute of Medicine (U.S.). Roundtable on translating genomic-based research for health., Institute of Medicine (U.S.). Board on Health Sciences Policy., Integrating large-scale genomic information into clinical practice: workshop summary, National Academies Press, Washington, D.C., 2012 Google Scholar

  • [45] Hood L., Flores M., A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory, N. Biotechnol., 2012, 29, 613–624 http://dx.doi.org/10.1016/j.nbt.2012.03.004CrossrefGoogle Scholar

  • [46] Snyderman R., Personalized health care: from theory to practice, Biotechnol. J., 2012, 7, 973–979 http://dx.doi.org/10.1002/biot.201100297CrossrefGoogle Scholar

  • [47] Weiner M.W., Veitch D.P., Aisen P.S., Beckett L.A., Cairns N.J., Green R.C., et al., The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception, Alzheimers Dement., 2012, 8, S1–68 http://dx.doi.org/10.1016/j.jalz.2011.09.172CrossrefGoogle Scholar

  • [48] Ellis K.A., Bush A.I., Darby D., De Fazio D., Foster J., Hudson P., et al., The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease, Int. Psychogeriatr., 2009, 21, 672–687 http://dx.doi.org/10.1017/S1041610209009405CrossrefGoogle Scholar

  • [49] Pike K.E., Savage G., Villemagne V.L., Ng S., Moss S.A., Maruff P., et al., Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease, Brain, 2007, 130, 2837–2844 http://dx.doi.org/10.1093/brain/awm238CrossrefGoogle Scholar

  • [50] Jack C.R., Jr., Lowe V.J., Senjem M.L., Weigand S.D., Kemp B.J., Shiung M.M., et al., 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment, Brain, 2008, 131, 665–680 http://dx.doi.org/10.1093/brain/awm336CrossrefGoogle Scholar

  • [51] Aizenstein H.J., Nebes R.D., Saxton J.A., Price J.C., Mathis C.A., Tsopelas N.D., et al., Frequent amyloid deposition without significant cognitive impairment among the elderly, Arch. Neurol., 2008, 65, 1509–1517 http://dx.doi.org/10.1001/archneur.65.11.1509CrossrefGoogle Scholar

  • [52] Mormino E.C., Kluth J.T., Madison C.M., Rabinovici G.D., Baker S.L., Miller B.L., et al., Episodic memory loss is related to hippocampalmediated beta-amyloid deposition in elderly subjects, Brain, 2009, 132, 1310–1323 http://dx.doi.org/10.1093/brain/awn320CrossrefGoogle Scholar

  • [53] Storandt M., Mintun M.A., Head D., Morris J.C., Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition, Arch. Neurol., 2009, 66, 1476–1481 http://dx.doi.org/10.1001/archneurol.2009.272CrossrefGoogle Scholar

  • [54] Villemagne V.L., Pike K.E., Chetelat G., Ellis K.A., Mulligan R.S., Bourgeat P., et al., Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease, Ann. Neurol., 2011, 69, 181–192 http://dx.doi.org/10.1002/ana.22248CrossrefGoogle Scholar

  • [55] Landau S.M., Mintun M.A., Joshi A.D., Koeppe R.A., Petersen R.C., Aisen P.S., et al., Amyloid deposition, hypometabolism, and longitudinal cognitive decline, Ann. Neurology, 2012, 72, 578–586 CrossrefGoogle Scholar

  • [56] Jack C.R., Jr., Wiste H.J., Vemuri P., Weigand S.D., Senjem M.L., Zeng G., et al., Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease, Brain, 2010, 133, 3336–3348 http://dx.doi.org/10.1093/brain/awq277CrossrefGoogle Scholar

  • [57] Wolk D.A., Price J.C., Saxton J.A., Snitz B.E., James J.A., Lopez O.L., et al., Amyloid imaging in mild cognitive impairment subtypes, Ann. Neurol., 2009, 65, 557–568 http://dx.doi.org/10.1002/ana.21598CrossrefGoogle Scholar

  • [58] Trzepacz P.T., Yu P., Sun J., Schuh K., Case M., Witte M.M., et al., Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia, Neurobiol. Aging, 2014, 35, 143–151 http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.018CrossrefGoogle Scholar

  • [59] Green R.C., Roberts J.S., Cupples L.A., Relkin N.R., Whitehouse P.J., Brown T., et al., Disclosure of APOE genotype for risk of Alzheimer’s disease, N. Engl. J. Med., 2009, 361, 245–254 http://dx.doi.org/10.1056/NEJMoa0809578CrossrefGoogle Scholar

  • [60] Steinbrook R., The Centers for Medicare & Medicaid Services and amyloid-beta positron emission tomography for Alzheimer disease, JAMA Intern. Med., 2014, 174, 135 http://dx.doi.org/10.1001/jamainternmed.2013.11705CrossrefGoogle Scholar

  • [61] Pearson S.D., Ollendorf D.A., Colby J.A., Amyloid-beta positron emission tomography in the diagnostic evaluation of Alzheimer disease: summary of primary findings and conclusions, JAMA Intern. Med., 2014, 174, 133–134 http://dx.doi.org/10.1001/jamainternmed.2013.11711CrossrefGoogle Scholar

  • [62] Doraiswamy P.M., Sperling R.A., Coleman R.E., Johnson K.A., Reiman E.M., Davis M.D., et al., Amyloid-beta assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study, Neurology, 2012, 79, 1636–1644 http://dx.doi.org/10.1212/WNL.0b013e3182661f74CrossrefGoogle Scholar

  • [63] Garber K., First FDA-approved beta-amyloid diagnostic hits the market, Nat. Biotechnol., 2012, 30, 575 http://dx.doi.org/10.1038/nbt0712-575CrossrefGoogle Scholar

  • [64] Leuzy A., Gauthier S., Ethical issues in Alzheimer’s disease: an overview, Expert Rev. Neurother., 2012, 12, 557–567 http://dx.doi.org/10.1586/ern.12.38CrossrefGoogle Scholar

  • [65] Lineweaver T.T., Bondi M.W., Galasko D., Salmon D.P., Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults, Am. J. Psychiatry, 2014, 171, 201–208 http://dx.doi.org/10.1176/appi.ajp.2013.12121590CrossrefGoogle Scholar

  • [66] Karlawish J., Green R.C., Minding the aging brain: are we ready for personalized medicine?, Am. J. Psychiatry, 2014, 171, 137–139 http://dx.doi.org/10.1176/appi.ajp.2013.13111536CrossrefGoogle Scholar

About the article

Published Online: 2014-03-28

Published in Print: 2014-03-01


Citation Information: Translational Neuroscience, Volume 5, Issue 1, Pages 51–56, ISSN (Online) 2081-6936, DOI: https://doi.org/10.2478/s13380-014-0205-y.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in