Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Molecular drug targets and therapies for Alzheimer’s disease

Dev Singh
  • Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manish Gupta
  • Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajesh Kesharwani / Mamta Sagar
  • Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seema Dwivedi / Krishna Misra
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/s13380-014-0222-x

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by normal memory loss and cognitive impairment in humans. Many drug targets and disease-modulating therapies are available for treatment of AD, but none of these are effective enough in reducing problems associated with recognition and memory. Potential drug targets so far reported for AD are β-secretase, Γ-secretase, amyloid beta (Aβ) and Aβ fibrils, glycogen synthase kinase-3 (GSK-3), acyl-coenzyme A: cholesterol acyl-transferase (ACAT) and acetylcholinesterase (AChE). Herbal remedies (antioxidants) and natural metal-chelators have shown a very significant role in reducing the risk of AD, as well as lowering the effect of Aβ in AD patients. Researchers are working in the direction of antisense and stem cell-based therapies for a cure for AD, which mainly depends on the clearance of misfolded protein deposits — including Aβ, tau, and alpha-synuclein. Computational approaches for inhibitor designing, interaction analysis, principal descriptors and an absorption, distribution, metabolism, excretion and toxicity (ADMET) study could speed up the process of drug development with higher efficacy and less chance of failure. This paper reviews the known drugs, drug targets, and existing and future therapies for the treatment of AD.

Keywords: Alzheimer’s disease; Amyloid β; Tau protein; Amyloid precursor protein; β and Γ-secretases; Glycogen synthase kinase-3; Acyl-coenzyme A: cholesterol acyl-transferase (ACAT)

  • [1] Moreira P.I., Zhu X., Nunomura A., Smith M.A., Perry G., Therapeutic options in Alzheimer’s disease, Expert Rev. Neurother., 2006, 6, 897–910 CrossrefGoogle Scholar

  • [2] Christensen D.D., Alzheimer’s disease: progress in the development of anti-amyloid disease-modifying therapies, CNS Spectr., 2007, 12, 119–123 Google Scholar

  • [3] Hüll M., Berger M., Heneka M., Disease-modifying therapies in Alzheimer’s disease: how far have we come?, Drugs, 2006, 66, 2075–2093 Google Scholar

  • [4] Papisov M., Belov V., Belova E., Fischman A.J., Fisher R., Wright J.L., et al., Investigation of intrathecal transport of NPT002, a prospective therapeutic based on phage M13, in nonhuman primates, Drug Deliv. Transl. Res., 2012, 2, 210–221 CrossrefGoogle Scholar

  • [5] Selkoe D.J., Alzheimer’s disease: genes, proteins, and therapy, Physiol. Rev., 2001, 81, 741–766 Google Scholar

  • [6] Glenner G.G., Wong C.W., Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun., 1984, 120, 885–890 CrossrefGoogle Scholar

  • [7] Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., et al., The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature, 1987, 325, 733–736 Google Scholar

  • [8] Vetrivel K.S., Thinakaran G., Amyloidogenic processing of betaamyloid precursor protein in intracellular compartments, Neurology, 2006, 66, S69–73 CrossrefGoogle Scholar

  • [9] Zimmermann M., Gardoni F., Di Luca M., Molecular rationale for the pharmacological treatment of Alzheimer’s disease, Drugs Aging, 2005, 22(Suppl. 1), 27–37 Google Scholar

  • [10] Van Marum R.J., Current and future therapy in Alzheimer’s disease, Fundam. Clin. Pharmacol., 2008, 22, 265–274 CrossrefGoogle Scholar

  • [11] Crouch P.J., Harding S.M., White A.R., Camakaris J., Bush A.I., Masters C.L., Mechanisms of A beta mediated neurodegeneration in Alzheimer’s disease, Int. J. Biochem. Cell Biol., 2008, 40, 181–198 CrossrefGoogle Scholar

  • [12] Roher A.E., Lowenson J.D., Clarke S., Woods A.S., Cotter R.J., Gowing E., et al., β-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1993, 90, 10836–10840 Google Scholar

  • [13] Jarrett J.T., Berger E.P, Lansbury P.T. Jr, The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease, Biochemistry, 1993, 32, 4693–4697 CrossrefGoogle Scholar

  • [14] Davis-Salinas J., Van Nostrand W.E., Amyloid β-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells, J. Biol. Chem., 1995, 270, 20887–20890 CrossrefGoogle Scholar

  • [15] Davis-Salinas J., Saporito-Irwin S.M., Cotman C.W., Van Nostrand W.E. Amyloid β-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells, J. Neurochem., 1995, 65, 931–934 Google Scholar

  • [16] Saito T., Suemoto T., Brouwers N., Sleegers K., Funamoto S., Mihira N., et al., Potent amyloidogenicity and pathogenicity of Aβ43, Nat. Neurosci., 2011, 14, 1023–1032 Google Scholar

  • [17] Malinchik S.B., Inouye H., Szumowski K.E., Kirschner D.A., Structural analysis of Alzheimer’s beta(1-40) amyloid: protofilament assembly of tubular fibrils, Biophys. J., 1998, 74, 537–545 Google Scholar

  • [18] Serpell L.C., Alzheimer’s amyloid fibrils: structure and assembly, Biochim. Biophys. Acta, 2000, 1502, 16–30 CrossrefGoogle Scholar

  • [19] Tycko R., Insights into the amyloid folding problem from solid-state NMR, Biochemistry, 2003, 42, 3151–159 CrossrefGoogle Scholar

  • [20] Balbach J.J., Petkova A.T., Oyler N.A., Antzutkin O.N., Gordon D.J., Meredith S.C., et al., Supramolecular structure in full-length Alzheimer’s beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance, Biophys. J., 2002, 83,1205–1216 CrossrefGoogle Scholar

  • [21] Antzutkin O.N., Leapman R.D., Balbach J.J., Tycko R., Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance, Biochemistry, 2002, 41, 15436–15450 CrossrefGoogle Scholar

  • [22] Chiu M.J., Chen Y.F., Chen T.F., Yang S.Y., Yang F.P., Tseng T.W., et al., Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease, Hum. Brain Mapp., 2014, 35, 3132–3142 CrossrefGoogle Scholar

  • [23] Holmes B.B., Diamond M.I., Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target, J. Biol. Chem., Epub ahead of print, DOI: jbc.R114.549295 Google Scholar

  • [24] Clavaguera F., Akatsu H., Fraser G., Crowther R.A., Frank S., Hench J., et al., Brain homogenates from human tauopathies induce tau inclusions in mouse brain, Proc. Natl. Acad. Sci. USA, 2013, 110, 9535–9540 CrossrefGoogle Scholar

  • [25] Nonaka T., Masuda-Suzukake M., Arai T., Hasegawa Y., Akatsu H., Obi T., et al., Prion-like properties of pathological TDP-43 aggregates from diseased brains, Cell Rep., 2013, 4, 124–134 CrossrefGoogle Scholar

  • [26] Yanamandra K., Kfoury N., Jiang H., Mahan T.E., Ma S., Maloney S.E., et al., Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo, Neuron, 2013, 80, 402–414 CrossrefGoogle Scholar

  • [27] Meyer-Luehmann M., Coomaraswamy J., Bolmont T., Kaeser S., Schaefer C., Kilger E., et al., Exogenous induction of cerebral betaamyloidogenesis is governed by agent and host, Science, 2006, 313, 1781–1784 CrossrefGoogle Scholar

  • [28] Hensley K., Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation, J. Alzheimers Dis., 2010, 21, 1–14 Google Scholar

  • [29] Kamat C.D., Gadal S., Mhatra M., Williamson K.S., Pye Q.N., Hensley K., Antioxidants in central nervous system diseases: preclinical promise and translational strategies, J. Alzheimers Dis., 2008, 15, 473–493 Google Scholar

  • [30] in t’ Veld B.A., Ruitenberg A., Hofman A., Launer L.J., Vn Duijn C.M., Stijnen T., et al., Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease, N. Engl. J. Med., 2001, 345, 1515–1521 Google Scholar

  • [31] Ferretti M.T., Allard S., Partridge V., Ducatenzeiler A., Cuello A.C., Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology, J. Neuroinflammation, 2012, 9, 62 Google Scholar

  • [32] Lorenzo A., Yankner B.A., β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red, Proc. Natl. Acad. Sci. USA., 1994, 91, 12243–12247 CrossrefGoogle Scholar

  • [33] Soto C., Sigurdsson E.M., Morelli L., Kumar R.A., Castaño E.M., Frangione B., Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model ofamyloidosis: implications for Alzheimer’s therapy, Nat. Med., 1998, 4, 822–826 CrossrefGoogle Scholar

  • [34] Klunk W.E., Jacob R.F., Mason R.P., Quantifying amyloid β-peptide (Aβ) aggregation using the Congo red-Aβ (CR-Aβ) spectrophotometric assay, Anal. Biochem., 1999, 266, 66–76 CrossrefGoogle Scholar

  • [35] Inouye H., Kirschner D.A., Alzheimer’s beta-amyloid: insights into fibril formation and structure from Congo red binding, Subcell. Biochem., 2005, 38, 203–224 CrossrefGoogle Scholar

  • [36] Wu C., Scott J., Shea J.E., Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ(9-40) peptide probed by molecular dynamics simulations, Biophys. J., 2012, 103, 550–557 CrossrefGoogle Scholar

  • [37] Staderini M., Aulić S., Bartolini M., Ai Tran H.N., González-Ruiz V., Pérez D.I., et al., A fluorescent styrylquinoline with combined therapeutic and diagnostic activities against Alzheimer’s and prion diseases, ACS Med. Chem. Lett., 2013, 4, 225–229 CrossrefGoogle Scholar

  • [38] McKnight R.E., Jackson D.R., Yokoyama K., Temperature dependence of Congo red binding to amyloid β12-28, Eur. Biophys. J., 2013, 42, 495–501 CrossrefGoogle Scholar

  • [39] Wang C.C., Huang H.B., Tsay H.J., Shiao M.S., Wu W.J., Cheng Y.C., et al., Characterization of Aβ aggregation mechanism probed by congo red, J. Biomol. Struct. Dyn., 2012, 30, 160–169 CrossrefGoogle Scholar

  • [40] John V., Tung J., Hom R., Guinn A., Fang L., Gailunas A., et al., Dipeptide inhibitors of β-secretase, US patent 6864240 Google Scholar

  • [41] Attanasio F., Convertino M., Magno A., Caflisch A., Corazza A., Haridas H., et al., Carnosine inhibits Aβ(42)aggregation by perturbing the H-bond network in and around the central hydrophobic cluster, Chembiochem, 2013, 14, 583–592 CrossrefGoogle Scholar

  • [42] Porat Y., Abramowitz A., Gazit E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism., Chem. Biol. Drug Des., 2006, 67, 27–37 CrossrefGoogle Scholar

  • [43] Masuda M., Suzuki N., Taniguchi S., Oikawa T., Nonaka T., Iwatsubo T., et al., Small molecule inhibitors of alpha-synuclein filament assembly, Biochemistry, 2006, 45, 6085–6094 CrossrefGoogle Scholar

  • [44] Feng Y., Wang X.P., Yang S.G., Wang Y.J., Zhang X., Du X.T., et al., Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation, Neurotoxicology, 2009, 30, 986–995 CrossrefGoogle Scholar

  • [45] Wang J., Ho L., Zhao W., Ono K., Rosensweig C., Chen L., et al., Grapederived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease, J. Neurosci., 2008, 28, 6388–6392 CrossrefGoogle Scholar

  • [46] Hamaguchi T., Ono K., Yamada M., Review: curcumin and Alzheimer’s disease, CNS Neurosci. Ther., 2010, 16, 285–297 CrossrefGoogle Scholar

  • [47] Ganguli M., Chandra V., Kamboh M.I., Johnston J.M., Dodge H.H., Thelma B.K., et al., Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US Cross-National Dementia Study, Arch. Neurol., 2000, 57, 824–830 CrossrefGoogle Scholar

  • [48] Ono K., Hasegawa K., Naiki H., Yamada M., Curcumin has potent antiamyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro, J. Neurosci. Res., 2004, 75, 742–750 CrossrefGoogle Scholar

  • [49] Yang F., Lim G.P., Begum A.N., Ubeda O.J., Simmons M.R., Ambegaokar S.S., et al., Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo, J. Biol. Chem., 2005, 280, 5892–5901 CrossrefGoogle Scholar

  • [50] Lim G.P., Chu T., Yang F., Beech W., Frautschy S.A., Cole G.M., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse, J. Neurosci., 2001, 21, 8370–8377 Google Scholar

  • [51] Garcia-Alloza M., Borrelli L.A., Rozkalne A., Hyman B.T., Bacskai B.J., Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model, J. Neurochem., 2007, 102,1095–1104 CrossrefGoogle Scholar

  • [52] Singh D.B., Gupta M.K., Kesharwani R.K., Misra K., Comparative docking and ADMET study of some curcumin derivatives and herbal congeners targeting β-amyloid, Netw. Model. Anal. Health Inform. Bioinforma., 2013, 2, 13–27 CrossrefGoogle Scholar

  • [53] Anand P., Thomas S.G., Kunnumakkara A.B., Sundaram C., Harikumar K.B., Sung B., et al., Biological activities of curcumin and its analogues (congeners) made by man and Mother Nature, Biochem. Pharmacol., 2008, 76, 1590–1611 CrossrefGoogle Scholar

  • [54] Mithu V.S., Sarkar B., Bhowmik D., Das A.K., Chandrakesan M., Maiti S., et al., Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates, J. Biol. Chem., 2014, 289, 11122–11131 Google Scholar

  • [55] Doggui S., Belkacemi A., Paka G.D., Perrotte M., Pi R., Ramassamy C., Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways, Mol. Nutr. Food Res., 2013, 57, 1660–1670 CrossrefGoogle Scholar

  • [56] Cole S.L., Vassar R., BACE1 structure and function in health and Alzheimer’s disease, Curr. Alzheimer Res., 2008, 5, 100–120 Google Scholar

  • [57] Sathya M., Premkumar P., Karthick C., Moorthi P., Jayachandran K.S., Anusuyadevi M., BACE1 in Alzheimer’s disease, Clin. Chim. Acta, 2012, 414, 171–178 Google Scholar

  • [58] Vassar R., BACE1: the β-secretase enzyme in Alzheimer’s disease, J. Mol. Neurosci., 2004, 23, 105–114 Google Scholar

  • [59] Evin G., Zhu A., Holsinger R.M., Masters C.L., Li Q.X., Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets, J. Neurosci. Res., 2003, 74, 386–392 CrossrefGoogle Scholar

  • [60] Cole S.L., Vassar R., The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology, J. Biol. Chem., 2008, 283, 29621–29625 Google Scholar

  • [61] Cole S.L., Vassar R., The Alzheimer’s disease beta-secretase enzyme, BACE1, Mol. Neurodegener., 2007, 15, 2–22 Google Scholar

  • [62] Vassar R., β-Secretase, APP and Aβ in Alzheimer’s disease, Subcell. Biochem., 2005, 38, 79–103 CrossrefGoogle Scholar

  • [63] Nawrot B., Targeting BACE with small inhibitory nucleic acids — a future for Alzheimer’s disease therapy?, Acta Biochim. Pol., 2004, 51, 431–444 Google Scholar

  • [64] Zuo Z., Luo X., Zhu W., Shen J., Shen X., Jiang H., et al., Molecular docking and 3D-QSAR studies on the binding mechanism of statinbased peptidomimetics with beta-secretase, Bioorg. Med. Chem., 2005, 13, 2121–2131 CrossrefGoogle Scholar

  • [65] Hussain I., Hawkins J., Harrison D., Hille C., Wayne G., Cutler L., et al., Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases β-cleavage of amyloid precursor protein and amyloid-β production in vivo, J. Neurochem., 2007, 100, 802–809 CrossrefGoogle Scholar

  • [66] Cheng X., Zhou Y., Gu W., Wu J., Nie A., Cheng J., et al., The selective BACE1 inhibitor VIa reduces amyloid-β production in cell and mouse models of Alzheimer’s disease, J. Alzheimers Dis., 2013, 37, 823–834 Google Scholar

  • [67] Paris D., Ganey N.J., Laporte V., Patel N.S., Beaulieu-Abdelahad D., Bachmeier C., et al., Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease, J. Neuroinflammation, 2010, 7, 17 CrossrefGoogle Scholar

  • [68] Niño H., García-Pintos I., Rodríguez-Borges J.E., Escobar-Cubiella M., García-Mera X., Prado-Prado F., Review of synthesis, biological assay and QSAR studies of β-secretase inhibitors, Curr. Comput. Aided Drug Des., 2011, 7, 263–275 Google Scholar

  • [69] Bali J., Halima S.B., Felmy B., Goodger Z., Zurbriggen S., Rajendran L., Cellular basis of Alzheimer’s disease, Ann. Indian Acad. Neurol., 2010, 13, 89–93 Google Scholar

  • [70] Rajendran L., Schneider A., Schlechtingen G., Weidlich S., Ries J., Braxmeier T., et al., Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting, Science, 2008, 320, 520–523 CrossrefGoogle Scholar

  • [71] Krishnaswamy S., Verdile G., Groth D., Kanyenda L., Martins R.N., The structure and function of Alzheimer’s gamma secretase enzyme complex, Crit. Rev. Clin. Lab. Sci., 2009, 46, 282–301 CrossrefGoogle Scholar

  • [72] Francis R., McGrath G., Zhang J., Ruddy D.A., Sym M., Apfeld J., et al., aph-1 and pen-2 are required for Notch pathway signaling, Γ-secretase cleavage of βAPP, and presenilin protein accumulation, Dev. Cell, 2002, 3, 85–97 CrossrefGoogle Scholar

  • [73] Evin G., Sernee M.F., Masters C.L., Inhibition of Γ-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies, CNS Drugs, 2006, 20, 351–372 CrossrefGoogle Scholar

  • [74] Guardia-Laguarta C., Pera M., Lleó A., Γ-Secretase as a therapeutic target in Alzheimer’s diseas, Curr. Drug Targets, 2010,11,506–517 Google Scholar

  • [75] Sisodia S.S., St George-Hyslop P.H., Γ-Secretase, notch, Aβ and Alzheimer’s disease: where do the presenilins fit in?, Nat. Rev. Neurosci., 2002, 3, 281–290 CrossrefGoogle Scholar

  • [76] Martinez-Mir A., González-Pérez A., Gayán J., Antúnez C., Marín J., Boada M., et al., Genetic study of neurexin and neuroligin genes in Alzheimer’s disease, J. Alzheimers Dis., 2013, 35, 403–412 Google Scholar

  • [77] Doody R.S., Raman R., Farlow M., Iwatsubo T., Vellas B., Joffe S., et al., A phase 3 trial of semagacestat for treatment of Alzheimer’s disease, N. Engl. J. Med., 2013, 369, 341–350 CrossrefGoogle Scholar

  • [78] Xing S., Shen D., Chen C., Wang J., Liu T., Yu Z., Regulation of neuronal toxicity of β amyloid oligomers by surface ATP synthase, Mol. Med. Rep., 2013, 8, 1689–1694 Google Scholar

  • [79] Panza F., Solfrizzi V., Frisardi V., Imbimbo B.P., Capurso C., D’Introno A., et al., Beyond the neurotransmitter-focused approach in treating Alzheimer’s disease: drugs targeting β-amyloid and tau protein, Aging Clin. Exp. Res., 2009, 21, 386–406 CrossrefGoogle Scholar

  • [80] Kerchner G.A., Boxer A.L., Bapineuzumab, Expert Opin. Biol. Ther., 2010, 10, 1121–1130 Google Scholar

  • [81] Imbimbo B.P., Ottonello S., Frisardi V., Solfrizzi V., Greco A., Seripa D., et al., Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease, Expert Rev. Clin. Immunol., 2012, 8, 135–149 CrossrefGoogle Scholar

  • [82] Masuda Y., Fukuchi M., Yatagawa T., Tada M., Takeda K., Irie K., et al., Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid β-protein fibrils, Bioorg. Med. Chem., 2011, 19, 5967–5974 CrossrefGoogle Scholar

  • [83] Goedert M., Spillantini M.G., Tau gene mutations and neurodegeneration, Biochem. Soc. Symp., 2001, 67, 59–71 Google Scholar

  • [84] De la Monte S.M., Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease, Curr. Alzheimer Res., 2012, 9, 35–66 Google Scholar

  • [85] Kaidanovich-Beilin O., Woodgett J.R., GSK-3: functional insights from cell biology and animal models, Front. Mol. Neurosci., 2011, 4, 1–25 Google Scholar

  • [86] Bertrand J.A., Thieffine S., Vulpetti A., Cristiani C., Valsasina B., Knapp S., et al., Structural characterization of the GSK-3β active site using selective and non-selective ATP-mimetic inhibitors, J. Mol. Biol., 2003, 333, 393–407 Google Scholar

  • [87] Saitoh M., Kunitomo J., Kimura E., Iwashita H., Uno Y., Onishi T., et al., 2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β with good brain permeability, J. Med. Chem., 2009, 52, 6270–6286 Google Scholar

  • [88] Gentile G., Bernasconi G., Pozzan A., Merlo G., Marzorati P., Bamborough P., et al., Identification of 2-(4-pyridyl)thienopyridinones as GSK-3β inhibitors, Bioorg. Med. Chem. Lett., 2011, 21, 4823–4827 Google Scholar

  • [89] Coffman K, Brodney M, Cook J, Lanyon L, Pandit J, Sakya S, et al., 6-amino-4-(pyrimidin-4-yl)pyridones: novel glycogen synthase kinase-3β inhibitors, Bioorg. Med. Chem. Lett., 2011, 21, 1429–1433 Google Scholar

  • [90] Stierand K., Rarey M., Drawing the PDB: protein-ligand complexes in two dimensions, Med. Chem. Lett., 2010, 1, 540–545 CrossrefGoogle Scholar

  • [91] Bhattacharyya R., Kovacs D.M., ACAT inhibition and amyloid beta reduction, Biochim. Biophys. Acta, 2010 1801, 960–965 CrossrefGoogle Scholar

  • [92] Chang T.Y., Li B.L., Chang C.C., Urano Y., Acyl-coenzyme A: cholesterol acyltransferases, Am. J. Physiol. Endocrinol. Metab., 2009, 297, E1–9 CrossrefGoogle Scholar

  • [93] Huttunen H.J., Puglielli L., Ellis B.C., MacKenzieIngano L.A., Kovacs D.M., Novel N-terminal cleavage of APP precludes Aβ generation in ACAT-defective AC29 cells, J. Mol. Neurosci., 2009, 37, 6–15 Google Scholar

  • [94] Huttunen H.J., Peach C., Bhattacharyya R., Barren C., Pettingell W., Hutter-Paier B., et al., Inhibition of acyl-coenzyme A: cholesterolacyltransferase modulates amyloid precursor protein trafficking in the earlysecretory pathway, FASEB J., 2009, 23, 3819–3828 CrossrefGoogle Scholar

  • [95] Puglielli L., Ellis B.C., Ingano L.A., Kovacs D.M., Role of acyl-coenzyme A: cholesterolacyltransferase activity in the processing of the amyloid precursorprotein, J. Mol. Neurosci., 2004, 24, 93–96 CrossrefGoogle Scholar

  • [96] Huttunen H.J., Greco C., Kovacs D.M., Knockdown of ACAT-1 reduces amyloidogenic processing of APP, FEBS Lett., 2007, 581, 1688–1692 Google Scholar

  • [97] Huttunen H.J., Kovacs D.M., ACAT as a drug target for Alzheimer’s disease, Neurodegener. Dis., 2008, 5, 212–214 CrossrefGoogle Scholar

  • [98] Hutter-Paier B., Huttunen H.J., Puglielli L., Eckman C.B., Kim D.Y., Hofmeister A., et al., The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease, Neuron, 2004, 44, 227–238 CrossrefGoogle Scholar

  • [99] Alegret M., Llaverias G., Silvestre J.S., Acyl coenzyme A: cholesterol acyltransferase inhibitors as hypolipidemic and antiatherosclerotic drugs, Methods Find. Exp. Clin. Pharmacol., 2004, 26, 563–586 CrossrefGoogle Scholar

  • [100] Huttunen H.J., Havas D., Peach C., Barren C., Duller S., Xia W., et al., The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice, J. Neuropathol. Exp. Neurol., 2010, 69, 777–788 CrossrefGoogle Scholar

  • [101] Gouras G.K., Beal M.F., Metal chelator decreases Alzheimer betaamyloid plaques, Neuron, 2001, 30, 641–642 CrossrefGoogle Scholar

  • [102] Lee J.Y., Friedman J.E., Angel I., Kozak A., Koh J.Y., The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursorprotein transgenic mice, Neurobiol. Aging, 2004, 25, 1315–1321 CrossrefGoogle Scholar

  • [103] Jia J.Y., Zhao Q.H., Liu Y., Gui Y.Z., Liu G.Y., Zhu D.Y., et al., Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer’s disease, Acta Pharmacol. Sin., 2013, 34, 976–982 Google Scholar

  • [104] Liang Y.Q., Tang X.C., Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats, Neurosci. Lett., 2004, 361, 56–59 CrossrefGoogle Scholar

  • [105] Ma X., Gang D.R., In vitro production of huperzine A, a promising drug candidate for Alzheimer’s disease, Phytochemistry, 2008, 69, 2022–2028 CrossrefGoogle Scholar

  • [106] McGleenon B.M., Dynan K.B., Passmore A.P., Acetylcholinesterase inhibitors in Alzheimer’s disease, Br. J. Clin. Pharmacol., 1999, 48, 471–480 Google Scholar

  • [107] Nasab N.M., Bahrammi M.A., Nikpour M.R., Rahim F., Naghibis S,N., Efficacy of rivastigmine in comparison to ginkgo for treating Alzheimer’s dementia, J. Pak. Med. Assoc., 2012, 62, 677–680 Google Scholar

  • [108] Granica S., Kiss A.K., Jarończyk M., Maurin J.K., Mazurek A.P., Czarnocki Z., Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors, Arch. Pharm. (Weinheim), 2013, 346, 775–782 CrossrefGoogle Scholar

  • [109] Altıntop M.D., Gurkan-Alp A.S., Ozkay Y., Kaplancıklı Z.A., Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors, Arch. Pharm. (Weinheim), 2013, 346, 571–576 CrossrefGoogle Scholar

  • [110] Altintop M.D., Özdemir A., Kaplancikli Z.A., Turan-Zitouni G., Temel H.E., Çiftçi G.A., Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors, Arch. Pharm. (Weinheim), 2013, 346, 189–199 CrossrefGoogle Scholar

  • [111] Atwood C.S., Scarpa R.C., Huang X., Moir R.D., Jones W.D., Fairlie D.P., et al., Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42, J. Neurochem., 2000, 75,1219–1233 Google Scholar

  • [112] Ha C., Ryu J., Park C.B., Metal ions differentially influence the aggregation and deposition of Alzheimer’s β-amyloid on a solid template, Biochemistry, 2007, 46, 6118–6125 CrossrefGoogle Scholar

  • [113] Tõugu V., Karafin A., Palumaa P., Binding of zinc(II) and copper(II) to the full-length Alzheimer’s amyloid-β peptide, J. Neurochem., 2008, 104, 1249–1259 CrossrefGoogle Scholar

  • [114] Bandyopadhyay S., Huang X., Lahiri D.K., Rogers J.T., Novel drug targets based on metallobiology of Alzheimer’s disease, Expert Opin. Ther. Targets, 2010, 14, 1177–1197 CrossrefGoogle Scholar

  • [115] Cherny R.A., Atwood C.S., Xilinas M.E., Gray D.N., Jones W.D., McLean C.A., et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice, Neuron, 2001, 30, 665–676 CrossrefGoogle Scholar

  • [116] Finefrock A.E., Bush A.I., Doraiswamy P.M., Current status of metals as therapeutic targets in Alzheimer’s disease, J. Am. Geriatr. Soc., 2003, 51, 1143–1148 CrossrefGoogle Scholar

  • [117] Huang X., Atwood C.S., Moir R.D., Hartshorn M.A., Tanzi R.E., Bush A.I., Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides, J. Biol. Inorg. Chem., 2004, 9, 954–960 CrossrefGoogle Scholar

  • [118] Mancino A.M., Hindo S.S., Kochi A., Lim M.H., Effects of clioquinol on metal-triggered amyloid-beta aggregation revisited, Inorg. Chem., 2008, 48, 9596–9598 Google Scholar

  • [119] Cuajungco M.P., Frederickson C.J., Bush A.I., Amyloid-beta metal interaction and metal chelation, Subcell. Biochem., 2005, 38, 235–254 CrossrefGoogle Scholar

  • [120] Lahiri D.K., Nall C., Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbolester, retinoic acid and interleukin-1, Brain Res. Mol. Brain Res., 1995, 32, 233–240 Google Scholar

  • [121] Lahiri D.K., Robakis N.K., The promote activity of the gene encoding Alzheimer beta amyloid precursor protein (APP) is regulated by two blocks of upstream sequences, Brain Res. Mol. Brain Res., 1991, 9, 253–257 CrossrefGoogle Scholar

  • [122] Rogers J.T., Leiter L.M., McPhee J., Cahill C.M., Zhan S.S., Potter H., et al., Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 50-untranslated region sequences, J. Biol. Chem., 1999, 274, 6421–6431 Google Scholar

  • [123] Greig N.H., De Micheli E., Holloway H.W., Yu Q-S., Utsuki T., Perry T., et al., The experimental Alzheimer drug phenserine: pharmacokinetics and pharmacodynamics in the rat, Acta Neurol. Scand., 2000, 176, 74–84 CrossrefGoogle Scholar

  • [124] Shaw K.T.Y., Utsuki T., Rogers J., Yu Q-S., Sambamurti K., Brossi A., et al., Phenserine regulates translation of β-amyloid precursor mRNA by a putative interleukin-1 responsive element, a target for drug development, Proc. Natl. Acad. Sci. USA, 2001, 98, 7605–7610 CrossrefGoogle Scholar

  • [125] Venti A., Giordano T., Eder P., Bush A.I., Lahiri D.K., Greig N.H., et al., The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5′-untranslated region, Ann. NY Acad. Sci., 2004, 1035, 34–48 CrossrefGoogle Scholar

  • [126] Bandyopadhyay S., Huang X., Cho H., Greig N.H., Youdim M.B., Rogers J.T., Metal specificity of an iron-responsive element in Alzheimer’s APP mRNA 5’ untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator, J. Neural. Transm. Suppl., 2006, 71, 237–247 Google Scholar

  • [127] Reznichenko L., Amit T., Zheng H., Avramovich-Tirosh Y., Youdim M.B., Weinreb O., et al., Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease, J. Neurochem., 2006, 97, 527–536 CrossrefGoogle Scholar

  • [128] Orgogozo J.M., Gilman S., Dartigues J.F., Laurent B., Puel M., Kirby L.C., et al., Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization, Neurology, 2003, 61, 46–54 CrossrefGoogle Scholar

  • [129] Holmes C., Boche D., Wilkinson D., Yadegarfar G., Hopkins V., Bayer A., et al., Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled I trial, Lancet, 2008, 372, 216–223 CrossrefGoogle Scholar

  • [130] Monsonego A., Zota V., Karni A., Krieger J.I., Bar-Or A., Bitan G., et al., Increased T-cell reactivity to amyloid-β protein in older humans and patients with Alzheimer disease, J. Clin. Invest., 2003, 112, 415–422 CrossrefGoogle Scholar

  • [131] Rask-Andersen M., Almén M.S., Schiöth H.B., Trends in the exploitation of novel drug targets, Nat. Rev. Drug Discov., 2011, 10, 579–590 CrossrefGoogle Scholar

  • [132] Anus C., Vaccines for Alzheimer’s disease: how close are we?, CNS Drugs, 2003, 17, 457–474 Google Scholar

  • [133] Pietrzik C., Behl C., Concepts for the treatment of Alzheimer’s disease: molecular mechanisms and clinical application, Int. J. Exp. Pathol., 2005, 86, 173–185 CrossrefGoogle Scholar

  • [134] Scarpini E., Scheltens P., Feldman H., Treatment of Alzheimer’s disease: current status and new perspectives, Lancet Neurol., 2003, 2, 539–547 CrossrefGoogle Scholar

  • [135] Siemers E.R., Dean R.A., Demattos R., May P.C., New pathways in drug discovery for Alzheimer’s disease, Curr. Neurol. Neurosci. Rep., 2006, 6, 372–378 CrossrefGoogle Scholar

  • [136] Singh D.B., Gupta M.K., Singh D.V., Singh S.K., Misra K., Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: a molecular drug target against malaria, Interdiscip. Sci., 2013, 5, 1–12 CrossrefGoogle Scholar

  • [137] Upadhyay J., Misra K., Towards the interaction mechanism of tocopherols and tocotrienols (vitamin E) with selected metabolizing enzymes, Bioinformation, 2009, 3, 326–331 CrossrefGoogle Scholar

  • [138] Douaud G., Refsum H., de Jager C.A., Jacoby R., Nichols T.E., Smith S.M., Smith A.D., Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment, Proc. Natl. Acad. Sci. USA, 2013, 110, 9523–9528 CrossrefGoogle Scholar

  • [139] Yu Y.J., Watts R.J., Developing therapeutic antibodies for neurodegenerative disease, Neurotherapeutics, 2013, 10, 459–472 CrossrefGoogle Scholar

  • [140] Watts R.J., Dennis M.S., Bispecific antibodies for delivery into the brain, Curr. Opin. Chem. Biol., 2013, 17, 393–399 CrossrefGoogle Scholar

  • [141] Yu Y.J., Zhang Y., Kenrick M., Hoyte K., Luk W., Lu Y., et al., Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target, Sci. Transl. Med., 2011, 3, 84ra44 Google Scholar

  • [142] Bien-Ly N., Yu Y.J., Bumbaca D., Elstrott J., Boswell C.A., Zhang Y., et al., Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants, J. Exp. Med., 2014, 211, 233–244 CrossrefGoogle Scholar

  • [143] Villeda S.A., Plambeck K.E., Middeldorp J., Castellano J.M., Mosher K.I., Luo J., et al., Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice, Nat. Med., 2014, 20, 659–663 CrossrefGoogle Scholar

  • [144] Sinha M., Jang Y.C., Oh J., Khong D., Wu E.Y., Manohar R., et al., Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 2014, 344, 649–652 Google Scholar

About the article

Published Online: 2014-08-15

Published in Print: 2014-09-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.2478/s13380-014-0222-x.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jiancheng Shi, Wentong Tu, Min Luo, and Chusheng Huang
Molecular Simulation, 2017, Volume 43, Number 2, Page 102
[2]
M. D. Pandareesh, M. K. Shrivash, H. N. Naveen Kumar, K. Misra, and M. M. Srinivas Bharath
Neurochemical Research, 2016, Volume 41, Number 11, Page 3113
[3]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101

Comments (0)

Please log in or register to comment.
Log in