Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

White matter architecture of the language network

Vanja Kljajevic
Published Online: 2014-09-17 | DOI: https://doi.org/10.2478/s13380-014-0232-8

Abstract

The relevance of anatomical connectivity for understanding of the neural basis of language was recognized in the 19th century, and yet this topic has only recently become the subject of wider research interest. In this paper, I review recent findings on white matter tracts implicated in language: the arcuate fasciculus, superior longitudinal fasciculus, extreme capsule, uncinate fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. The reviewed findings on these tracts were reported in studies that used a variety of methods, from post-mortem dissection and diffusion imaging to intraoperative electrostimulation with awake surgery patients. The emerging picture suggests that there is currently no consensus with regard to the exact number and identity of the tracts supporting language, their origins, trajectories, and terminations, as well as their functional interpretation.

Keywords: White matter; Anatomical connectivity; Language; Dorsal stream; Ventral stream; Aphasia

  • [1] Mesulam M.-M., Representation, inference, and transcendent encoding in neurocognitive networks of the human brain, Ann. Neurol., 2008, 64, 367–378 CrossrefGoogle Scholar

  • [2] Buckner R., Andrews-Hanna J.R., Schacter D.L., The brain’s default network anatomy, function, and relevance to disease, Ann. NY Acad. Sci., 2008, 1124, 1–38 CrossrefGoogle Scholar

  • [3] Mesulam M.-M., Large-scale neurocognitive networks and distributed processing for attention, language, and memory, Ann. Neurol., 1990, 28, 597–613 CrossrefGoogle Scholar

  • [4] Mesulam M.-M., Imaging connectivity in the human cerebral cortex: the next frontier?, Ann. Neurol., 2005, 57, 5–7 CrossrefGoogle Scholar

  • [5] Mesulam M.-M., Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron, 2009, 62, 1–3 CrossrefGoogle Scholar

  • [6] Assaf Y., Pasternak O., Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review, J. Mol. Neuroscience, 2008, 34, 51–61 CrossrefGoogle Scholar

  • [7] Oishi K., Faria A., van Zijl P.C.M., Mori S., MRI atlas of human white matter, Elsevier, Amsterdam, The Netherlands, 2011 Google Scholar

  • [8] Le Bihan D., Mangin J.-F., Poupon C., Clark C.A., Pappata S., Molko N., et al., Diffusion tensor imaging: concepts and applications, J. Magn. Reson. Imaging, 2001, 13, 534–546 CrossrefGoogle Scholar

  • [9] O’Donnell L.J., Westin C-F., An introduction to diffusion tensor image analysis, Neurosurg. Clin. N. Am., 2011, 22, 185–196 CrossrefGoogle Scholar

  • [10] Kljajevic V., Meyer P., Holzmann C., Dyrba M., Kasper E., Bokde A.L.W., et al., The ɛ4 genotype of apolipoprotein E and white matter integrity in Alzheimer’s disease, Alzheimers Dement., 2014, 10, 401–404 CrossrefGoogle Scholar

  • [11] Kollias S., Parcelation of the white matter using DTI: insights into the functional connectivity of the brain, Neuroradiol. J., 2009, 22(Supl. 1), 45–58 Google Scholar

  • [12] Basser P.J., Özarslan E., Introduction to diffusion MRI, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 3–10 Google Scholar

  • [13] Mori S., van Zijl P.C.M., Fiber tracking: principles and strategies — a technical review, NMR Biomed., 2002, 15, 468–480 CrossrefGoogle Scholar

  • [14] Mori S., Introduction to difussion tensor imaging, Elsevier, Amsterdam, The Netherlands, 2007 Google Scholar

  • [15] Seunarine K., Alexander D.C., Multiple fibers: beyond the diffusion tensor, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 55–72 Google Scholar

  • [16] Passingham R.E., What we can and cannot tell about the wiring of the human brain, Neuroimage, 2013, 80, 14–17 CrossrefGoogle Scholar

  • [17] Meynert T.H., Ein Fall von Sprachstörung, anatomisch begründet. Medizinische Jahrbücher. XII. Band der Zeitschrift der K. K. Gesellleschaft der Arzte in Wien, 22. Jahr, 1866, 152–189 Google Scholar

  • [18] Broca P., Sur le siege de la faculté du langage articulé, Bulletin de la Société d’Anthropologie, 1865, 6, 337–393 Google Scholar

  • [19] Wernicke C., Der aphasiche Symptomenkomplex, Cohn und Weigert, Breslau, 1874 Google Scholar

  • [20] Lichtheim L., On aphasia, Brain, 1885, 7, 433–484 CrossrefGoogle Scholar

  • [21] Geschwind N., Disconnexion syndromes in animals and man, Brain, 1965, 88, 585–644 CrossrefGoogle Scholar

  • [22] Geschwind N., The organization of language in the brain, Science, 1970, 170, 940–944 CrossrefGoogle Scholar

  • [23] Catani M., Jones D.K., ffytche D.H., Perisylvian language networks of the human brain, Ann. Neurol., 2005, 57, 8–16 CrossrefGoogle Scholar

  • [24] Vigneau M., Beaucousin V., Hervé P.Y., Duffau H., Crivello F., Houdé O., et al., Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing, Neuroimage, 2006, 30, 1414–1432 CrossrefGoogle Scholar

  • [25] Price C.J., The anatomy of language: a review of 100 fMRI studies published in 2009, Ann. NY Acad. Sci., 2010, 1191, 62–88 CrossrefGoogle Scholar

  • [26] Price C.J., A review and synthesis of the first 20 years pf PET and fMRI studies of heard speech, spoken language and reading, Neuroimage, 2012, 62, 816–847 CrossrefGoogle Scholar

  • [27] Signoret J.-L., Castaigne P., Lhermitte F., Abelanet R., Lavorel P., Rediscovery of Leborgne’s brain: anatomical description with CT scan, Brain Lang., 1984, 22, 303–319 CrossrefGoogle Scholar

  • [28] Dronkers N.F., Plaisant O., Iba-Zizen M.T., Cabanis E.A., Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong, Brain, 2007, 130, 1432–1441 CrossrefGoogle Scholar

  • [29] Damasio H., Damasio A.R., The anatomical basis of conduction aphasia, Brain, 1980, 103, 337–350 CrossrefGoogle Scholar

  • [30] Shuren J.E., Schefft B.K., Yeh H.-S., Privitera M.D., Cahill W.T., Houston W., Repetiotion and the arcuate fasciculus, J. Neurol., 1995, 242, 596–598 CrossrefGoogle Scholar

  • [31] Quigg M., Geldmacher D.S., Elias J.W., Conduction aphasia as a function of the dominant posterior perisylvian cortex, J. Neurosurg., 2006, 104, 845–848 CrossrefGoogle Scholar

  • [32] Rauschecker A.M., Deutsch G.K., Ben-Shachar M., Schwartzman A., Perry L.M., Dougherty R.F., Reading impairment in a patient with missing arcuate fasciculus, Neuropsychologia, 2009, 47, 180–194 CrossrefGoogle Scholar

  • [33] Benson F., Sheremata W.A., Bouchard R., Segarra J.M., Price D., Geschwind N., Conduction aphasia: a clinicopathological study, Arch. Neurol., 1973, 28, 339–346 CrossrefGoogle Scholar

  • [34] Axer H., von Keyserlingk A.G., Berks G., von Keyserlingk D.G., Supra- and infrasylvian conduction aphasia, Brain Lang., 2001, 76, 317–331 CrossrefGoogle Scholar

  • [35] Kempen G., Sentence parsing, In: Friederici A. (Ed.), Language comprehension: a biological perspective, Springer, Berlin, Germany, 1998, 213–228 Google Scholar

  • [36] Tyler L.K., Marslen-Wilson W., Fronto-temporal brain systems supporting spoken language comprehension, Phil. Trans. R. Soc. Lond. B, 2008, 363, 1037–1054 Google Scholar

  • [37] Mishkin M., Ungerleider L.G., Macko K.A., Object vision and spatial vision: two cortical pathways, Trends Neurosci., 1983, 6, 414–417 CrossrefGoogle Scholar

  • [38] Rauschecker J.P., Tian B., Mechanisms and streams for processing of “what“ and “where” in auditory cortex, Proc. Natl. Acad. Sci USA, 2000, 97, 11800–11806 CrossrefGoogle Scholar

  • [39] Hickok G., Poeppel D., Towards a functional anatomy of speech perception, Trends Cogn. Sci., 2000, 4, 131–138 CrossrefGoogle Scholar

  • [40] Hickok G., Poeppel D., Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language, Cognition, 2004, 92, 67–99 CrossrefGoogle Scholar

  • [41] Hickok G., Poeppel D., The cortical organization of speech processing, Nat. Rev. Neurosci., 2007, 8, 393–402 CrossrefGoogle Scholar

  • [42] Axer H., Klingner C.M., Prescher A., Fiber anatomy of dorsal and ventral language streams, Brain Lang., 2013, 127, 192–204 CrossrefGoogle Scholar

  • [43] Hickok G., The functional neuroanatomy of language, Phys. Life Rev., 2009, 6, 121–143 CrossrefGoogle Scholar

  • [44] Petrides M., Pandya D.N., Neural circuitry underlying language, In: Mariën P., Abutalebi, J. (Eds.), Neuropsychological research, Psychology Press, New York, NY, USA, 2008, 25–50 Google Scholar

  • [45] Gharabaghi A., Kunath F., Erb M., Saur R., Heckl S., Tatagiba M., et al., Perisylvian white matter connectivity in the human right hemisphere. BMC Neurosci., 2009, 10, 15 CrossrefGoogle Scholar

  • [46] Thiebaut de Schotten M., Dell’Acqua F., Valabregue R., Catani, M., Monkey to human comparative anatomy of the frontal lobe association tracts, Cortex, 2012, 48, 82–96 CrossrefGoogle Scholar

  • [47] Makris N., Kennedy D.N., McInerney S., Sorensen A.G., Wang R., Caviness V., et al., Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DTMRI study, Cereb. Cortex, 2005, 15, 854–869 CrossrefGoogle Scholar

  • [48] Petrides M., Pandya D.N., Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey, J. Comp. Neurol., 1988, 273, 52–66 CrossrefGoogle Scholar

  • [49] Bernal B., Altman N., The connectivity of the superior longitudinal fasciculus: a tractography DTI study, Magn. Reson. Imaging, 2010, 28, 217–225 CrossrefGoogle Scholar

  • [50] Bernal B., Ardila A., The role of the arcuate fasciculus in conduction aphasia, Brain, 2009, 132, 2309–2316 CrossrefGoogle Scholar

  • [51] Petrides M., Pandya D.N., Projections to the frontal cortex from the posterior parietal region in the rhesus monkey, J. Comp. Neurol., 1984, 228, 105–116 CrossrefGoogle Scholar

  • [52] Jones D.K., Studying connections in the living human brain with diffusion MRI, Cortex, 2008, 44, 936–952 CrossrefGoogle Scholar

  • [53] Rilling J.K., Glasser M.F., Preuss T.M., Ma X, Zhao T., Hu X., et al., The evolution of the arcuate fasciculus revealed with comparative DTI, Nat. Neurosci., 2008, 11, 426–428 CrossrefGoogle Scholar

  • [54] Parker G.J., Luzzi S., Alexander D.C., Wheeler-Kingshott C.A., Ciccarelli O., Lambon Ralf, M.A., Lateralization of ventral and dorsal auditorylanguage pathways in the human brain, Neuroimage, 2005, 24, 656–666 CrossrefGoogle Scholar

  • [55] Glasser M.F., Rilling J.K., DTI tractography of the human brain’s language pathways, Cereb. Cortex, 2008, 18, 2471–2482 CrossrefGoogle Scholar

  • [56] Catani M., Dell’Acqua F., Bizzi A., Firkel S.J., Williams S.C., Simmons A., et al., Beyond cortical localization in clinico-anatomical correlation, Cortex, 2012, 48, 1262–1287 CrossrefGoogle Scholar

  • [57] Fridriksson J., Guo D., Fillmore P., Holland A., Rorden C., Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia, Brain, 2013, 136, 3451–3460 CrossrefGoogle Scholar

  • [58] Duffau H., Capelle L., Sichez N., Denvil D., Lopes M., Sichez J.-P., et al., Intraoperative mapping of the subcortical language pathways using direct stimulation. An anatomo-functional study, Brain, 2002, 125, 199–214 CrossrefGoogle Scholar

  • [59] Duffau H., Gatinol P., Moritz-Gasser S., Mandonnet E., Is the left uncinate fasciculus essential for language?, J. Neurol., 2009, 256, 382–389 CrossrefGoogle Scholar

  • [60] Maldonado I.L., Moritz-Gasser S., Duffau H., Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study, Brain Struct. Funct., 2011, 216, 263–274 Google Scholar

  • [61] Rolheiser T., Stamatakis E.A., Tyler L.K., Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule, J. Neurosci., 2011, 31, 16949–16957 CrossrefGoogle Scholar

  • [62] Wilson S.M., Galantucci S., Tartaglia M.C., Rising K., Patterson D.K., Henry M.L., et al., Syntactic processing depends on dorsal language tracts, Neuron, 2011, 72, 397–403 CrossrefGoogle Scholar

  • [63] Catani M., Craig M.C., Forkel S.J., Kanaan R., Picchioni M., Toulopoulou T., et al., Altered integrity of perisylvian language pathways in schizophrenia: relationship to auditory hallucinations, Biol. Psychiatry, 2011, 70, 1143–1150 CrossrefGoogle Scholar

  • [64] López-Barroso D., Catani M., Ripollés P., Dell’Acqua F., Rodríguez-Fornells A., de Diego-Balaguer R., Word learning is mediated by the left arcuate fasciculus, Proc. Natl. Acad. Sci USA, 2013, 110, 13168–13173 CrossrefGoogle Scholar

  • [65] Thiebaut de Schotten M., Cohen L., Amemiya E., Braga L.W., Dehaene S., Learning to read improves the structure of the arcuate fasciculus, Cereb. Cortex, 2014, 24, 989–995 CrossrefGoogle Scholar

  • [66] Schmahmann J.D., Pandya D.N., Wang R., Dai G., D’Arceuil H.E., de Crespigny A.J. et al., Association fiber pathways of the brain: parallel observation from diffusion spectrum imaging and autoradiography, Brain, 2007, 130, 630–653 CrossrefGoogle Scholar

  • [67] Makris N., Pandya D.N., The extreme capsule in humans and rethinking of the language circuitry, Brain Struct. Funct., 2009, 213, 343–358 Google Scholar

  • [68] Saur D., Kreher B.W., Schnell S., Kümmerer D., Kellmeyer P., Vry M.S., et al., Ventral and dorsal pathways for language, Proc. Natl. Acad. Sci. USA, 2008, 105, 18035–18040 CrossrefGoogle Scholar

  • [69] Frey S., Campbell J.S.W., Pike B.G., Petrides M., Dissociating the human language pathways with high angular resolution diffusion fiber tractography, J. Neurosci., 2008, 28, 11435–11444 CrossrefGoogle Scholar

  • [70] Yamada K., Diffusion tensor tractography should be used with caution, Proc. Natl. Acad. Sci. USA, 2009, 106, E14 CrossrefGoogle Scholar

  • [71] Brauer J., Anwander A., Perani D., Friederici A.D., Dorsal and ventral pathways in language development, Brain Lang., 2013, 127, 289–295 CrossrefGoogle Scholar

  • [72] Makris N., Papadimitriou G.M., Kaiser J.R., Sorg S., Kennedy D.N., Pandya D.N., Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study, Cereb. Cortex, 2009, 19, 777–785 CrossrefGoogle Scholar

  • [73] Catani M., Howard R.J., Pajevic S., Jones D.K., Virtual in vivo dissection of white matter fasciculi in the human brain, Neuroimage, 2002, 17, 77–94 CrossrefGoogle Scholar

  • [74] Schmahmann J.D., Smith E.E., Eichler F.S., Filley C.M., Cerebral white matter. Neuroanatomy, clinical neurology, and neurobehavioral correlates, Ann. NY Acad. Sci., 2008, 1142, 266–309 CrossrefGoogle Scholar

  • [75] Catani M., Mesulam M.-M., Jakobsen E., Malik F., Matersteck A., Wieneke C., et al., A novel frontal pathway underlies verbal fluency in primary progressive aphasia, Brain, 2013, 136, 2619–2628 CrossrefGoogle Scholar

  • [76] Harvey D.Y., Wei T., Ellmore T.E., Hamilton C.A., Schnur T.T., Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control, Neuropsychologia, 2013, 51, 789–801 CrossrefGoogle Scholar

  • [77] Papagno C., Miracapillo C., Casarotti A., Romero Lauro L.J., Castellano A., Falini A., et al., What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval, Brain, 2011, 134, 405–414 CrossrefGoogle Scholar

  • [78] Nomura K., Kazui H., Tokunaga H., Hirata M., Goto T., Goto Y., et al., Possible roles of the dominant uncinate fasciculus in naming objects: a case report of intraoperative electrical stimulation on a patient with a brain tumour, Behav. Neurol., 2013, 27, 229–234 CrossrefGoogle Scholar

  • [79] Han Z., Ma Y., Gong G., Caramazza A., Bi Y., White matter structural connectivity underlying semantic processing: evidence from brain damaged patients, Brain, 2013, 136, 2952–2965 CrossrefGoogle Scholar

  • [80] Duffau H., The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography, Neuropsychologia, 2008, 46, 927–934 CrossrefGoogle Scholar

  • [81] Duffau H., Moritz-Gasser S., Mandonett E., A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming, Brain Lang., 2014, 131, 1–10 CrossrefGoogle Scholar

  • [82] Makris N., Preti M.G., Asami T., Pelavin P., Campbell B., Papadimitriou G.M., et al., Human middle longitudinal fascicle: variations in patterns of anatomical connections, Brain Struct. Funct., 2013, 218, 951–968 CrossrefGoogle Scholar

  • [83] Seltzer B., Pandya D.N., Further observations on parietotemporal connections in the rhesus monkey, Exp. Brain Res., 1984, 55, 301–312 Google Scholar

  • [84] Wang Y., Fernandez-Miranda J.C., Verstynen T., Pathak S., Schneider W., Yeh F.-C., Rethinking the role of the middle longitudinal fascicle in language and auditory pathways, Cereb. Cortex, 2013, 23, 2347–2356 CrossrefGoogle Scholar

  • [85] Menjot de Champfleur N., Maldonado I.L., Moritz-Gasser S., Machi P., Le Bars E., Bonafé A., et al., Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human, Eur. J. Radiol., 2013, 81, 151–157 CrossrefGoogle Scholar

  • [86] Turken A.U., Dronkers N.F., The neural architecture of the language comprehension network: converging evidence from leasion and connectivity analyses, Front. Syst. Neurosci., 2011, 5, 1–20 Google Scholar

  • [87] De Witt Hamer P., Moritz-Gasser S., Gatignol P., Duffau H., Is the human left middle longitudinal fasciculus essential for language? A brain electrostimulation study, Hum. Brain Mapp., 2011, 32, 962–973 CrossrefGoogle Scholar

  • [88] Desmurget M., Bonnetblanc F., Duffau H., Contrasting acute and slow-growing lesions: a new door to brain plasticity, Brain, 2007, 130, 898–914 Google Scholar

  • [89] Martino J., De Witt Hamer P., Vergani F., Brogna C., de Lucas E.M., Vázquez-Barquero A., et al., Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain, J. Anat., 2011, 219, 531–541 CrossrefGoogle Scholar

  • [90] Gil-Robles S., Carvallo A., del Mar Jimenez M., Caicoya A.G., Martinez R., Ruiz-Ocana C., et al., Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation, Neurosurgery, 2013, 72, 678–686 Google Scholar

  • [91] Mandonnet E., Nouet A., Gatignol P., Cappelle L., Duffau H., Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study, Brain, 2007, 130, 623–629 CrossrefGoogle Scholar

  • [92] Catani M., Jones D.K., Donato R., ffytche D.H., Occipito-temporal connections in the human brain, Brain, 2003, 126, 2093–2107 CrossrefGoogle Scholar

  • [93] Epelbaum S., Pinel P., Gaillard R., Delmaire C., Perrin M., Dupont S., et al., Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept, Cortex, 2008, 44, 962–974 CrossrefGoogle Scholar

  • [94] Duffau H., Herbert G., Moritz-Gasser S., Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients, Front. Syst. Neurosci., 2013, 7, 44 CrossrefGoogle Scholar

  • [95] Kier L.E., Staib H.L., Davis L.M., Bronen R.A., MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipito-frontal fasciculus, and Meyer’s loop of the optic radiation, Am. J. Neuroradiol., 2004, 25, 677–691 Google Scholar

  • [96] Schmahmann J.D., Pandya D.N., The complex history of the frontooccipital fasciculus, J. Hist. Neurosci., 2007, 16, 362–377 CrossrefGoogle Scholar

  • [97] Vandermosten M., Boets B., Poelmans H., Sunaert S., Wouters J., Ghesquière P., A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing, Brain, 2012, 135, 935–948 CrossrefGoogle Scholar

  • [98] Martino J., Brogna C., Robles S.G., Vergani F., Duffau H., Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data, Cortex, 2010, 46, 691–699 CrossrefGoogle Scholar

  • [99] Sarubbo S., De Benedictis A., Maldonado I.L., Basso G., Duffau H., Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle, Brain Struct. Funct., 2013, 218, 21–37 CrossrefGoogle Scholar

  • [100] Caverzasi E., Papinutto N., Amirbekian B., Berger M.S., Henry R.G., Q-ball of inferior fronto-occipital fasciculus and beyond, PLoS One, 2014, 9, e100274 Google Scholar

  • [101] Duffau H., Gatignol P., Mandonnet E., Peruzzi P., Tzourio-Mazoyer N., Capelle L., New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations, Brain, 2005, 128, 797–810 CrossrefGoogle Scholar

  • [102] Catani M., Mesulam M.-M., The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state, Cortex, 2008, 44, 953–961 CrossrefGoogle Scholar

  • [103] Motomura K., Fujii M., Maesawa S., Kuramitsu S., Natsume A., Wakabayashi T., Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study, J. Neurosurg., 2014, 121, 142–148 CrossrefGoogle Scholar

  • [104] Catani M., From hodology to function, Brain, 2007, 130, 602–605 CrossrefGoogle Scholar

  • [105] Gierhan S.M.E., Connections for auditory language in the human brain, Brain Lang., 2013, 127, 205–221 CrossrefGoogle Scholar

  • [106] Bressler S.L., Menon V., Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci., 2010, 14, 277–290 CrossrefGoogle Scholar

  • [107] Mesulam M.-M., The evolving landscape of human cortical connectivity: facts and inferences, Neuroimage, 2012, 62, 2182–2189 CrossrefGoogle Scholar

  • [108] Catani M., Thiebaut de Schotten M., Slater D., Dell’Acqua F., Connectomic approaches before the connectome, Neuroimage, 2013, 80, 2–13 CrossrefGoogle Scholar

  • [109] Catani M., The connectional anatomy of language: recent contributions from diffusion tensor tractography, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 403–414 Google Scholar

  • [110] Dick A.S., Tremblay P., Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language, Brain, 2012, 135, 3529–3550 CrossrefGoogle Scholar

  • [111] Dick A.S., Bernal B., Tremblay P., The language connectome: new pathways, new concepts, Neuroscientist, 2013, Epub ahead of print, DOI: 10.1177/1073858413513502 CrossrefGoogle Scholar

  • [112] Lindenberg R., Fangerau H., Seitz R.J., “Broca’s area” as a collective term?, Brain Lang., 2007, 102, 22–29 CrossrefGoogle Scholar

  • [113] Wise R.J.S., Scott S.K., Blank C., Mummery C.J., Murphy K., Warburton E.A., Separate neural subsystems within ‘Wernicke’s area’, Brain, 2001, 124, 83–95 CrossrefGoogle Scholar

  • [114] Lemaire J.-J., Golby A., Wells W.M.3rd, Pujol S., Tie Y., Rigolo L., et al., Extended Broca’s area in the functional connectome of language in adults: combined cortical and subcortical singlesubject analysis using fMRI and DTI tractography, Brain Topogr., 2013, 26, 428–441 CrossrefGoogle Scholar

  • [115] Kinoshita M., Shinohara H., Hori O., Ozaki N., Ueda F., Nakada M., et al., Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractography anatomy, J. Neurosurg., 2012, 116, 323–330 CrossrefGoogle Scholar

  • [116] Catani M., Dell’Acqua F., Vergani F., Malik F., Hodge H., Roy P., et al., Short frontal lobe connections of the human brain, Cortex, 2012, 48, 273–291 CrossrefGoogle Scholar

  • [117] Bartsch A.J., Biller A., Homola G.A., Tractography for surgical targeting, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam, The Netherlands, 2009, 415–444 Google Scholar

About the article

Published Online: 2014-09-17

Published in Print: 2014-12-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.2478/s13380-014-0232-8.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hua Zhou, Yan Tang, and Zhi Yuan
Journal of Integrative Neuroscience, 2017, Page 1
[2]
Daniel S. Tylee, Zora Kikinis, Thomas P. Quinn, Kevin M. Antshel, Wanda Fremont, Muhammad A. Tahir, Anni Zhu, Xue Gong, Stephen J. Glatt, Ioana L. Coman, Martha E. Shenton, Wendy R. Kates, and Nikos Makris
NeuroImage: Clinical, 2017, Volume 15, Page 832

Comments (0)

Please log in or register to comment.
Log in