Jump to ContentJump to Main Navigation
Show Summary Details

Translational Neuroscience

Editor-in-Chief: Šimic, Goran

1 Issue per year

IMPACT FACTOR 2015: 1.012

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286
Impact per Publication (IPP) 2015: 1.155

Open Access
See all formats and pricing

A novel head-neck cooling device for concussion injury in contact sports

Huan Wang
  • Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
  • Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
/ Bonnie Wang
  • Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
/ Kevin Jackson
  • Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
/ Claire M. Miller
  • Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, USA
/ Linda Hasadsri
  • Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
/ Daniel Llano
  • Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign, Carle Foundation Hospital, Urbana, USA
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
/ Rachael Rubin
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
/ Jarred Zimmerman
  • Department of Sports Medicine, Carle Foundation Hospital, Urbana, USA
/ Curtis Johnson
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, USA
/ Brad Sutton
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
  • Department of Electrical and Computer Engineering, University of Illinois at Urbana- Champaign, Urbana, USA
Published Online: 2015-01-14 | DOI: https://doi.org/10.1515/tnsci-2015-0004


Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.

Keywords: Head-neck cooling; Mild traumatic brain injury; Brain hypothermia; Brain temperature; Sports


  • [1] Langlois J.A., Rutland-Brown W., Wald M.M., The epidemiology and impact of traumatic brain injury: a brief overview, J. Head Trauma Rehabil., 2006, 21, 375-378

  • [2] Thurman D.J., Alverson C., Dunn K.A., Guerrero J., Sniezek J.E., Traumatic brain injury in the United States: a public health perspective, J. Head Trauma Rehabil., 1999, 14, 602-615

  • [3] Maruta J., Lee S.W., Jacobs E.F., Ghajar J., A unified science of concussion, Ann. NY Acad. Sci., 2010, 1208, 58-66

  • [4] Wood R.L., Understanding the ‘miserable minority’: a diasthesisstress paradigm for post-concussional syndrome, Brain Inj., 2004, 18, 1135-1153

  • [5] Iverson G.L., Outcome from mild traumatic brain injury, Curr. Opin. Psychiatry, 2005, 18, 301-317 [Crossref]

  • [6] Lovell M., The management of sports-related concussion: current status and future trends, Clin. Sports Med., 2009, 28, 95-111 [Crossref]

  • [7] Solomon G.S., Ott S.D., Lovell M.R., Long-term neurocognitive dysfunction in sports: what is the evidence?, Clin. Sports Med., 2011, 30, 165-177 [Crossref]

  • [8] Gavett B.E., Stern R.A., McKee A.C., Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma, Clin. Sports Med., 2011, 30, 179-188 [Crossref]

  • [9] McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, J. Neuropathol. Exp. Neurol., 2009, 68, 709-735

  • [10] Talavage T.M., Nauman E., Breedlove E.L., Yoruk U., Dye A.E., Morigaki K., et al., Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion, J. Neurotrauma, 2014, 31, 327-338 [Crossref]

  • [11] McAllister T.W., Flashman L.A., Maerlender A., Greenwald R.M., Beckwith J.G., Tosteson T.D., et al., Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes, Neurology, 2012, 78, 1777-1784 [Crossref]

  • [12] Guskiewicz K.M., Marshall S.W., Bailes J., McCrea M., Harding H.P.Jr., Matthews A., et al., Recurrent concussion and risk of depression in retired professional football players, Med. Sci. Sports Exerc., 2007, 39, 903-909 [Crossref]

  • [13] Omalu B.I., DeKosky S.T., Hamilton R.L., Minster R.L., Kamboh M.I., Shakir A.M., et al., Chronic traumatic encephalopathy in a national football league player: part II, Neurosurgery, 2006, 59, 1086-1092, discussion 1092-1093

  • [14] Omalu B.I., Bailes J., Hammers J.L., Fitzsimmons R.P., Chronic traumatic encephalopathy, suicides and parasuicides in professional American athletes: the role of the forensic pathologist, Am. J. Forensic Med. Pathol., 2010, 31, 130-132 [Crossref]

  • [15] Jane J.A., Steward O., Gennarelli T., Axonal degeneration induced by experimental noninvasive minor head injury, J. Neurosurg., 1985, 62, 96-100 [Crossref]

  • [16] Morales D.M., Marklund N., Lebold D., Thompson H.J., Pitkänen A., Maxwell W.L., et al., Experimental models of traumatic brain injury: do we really need to build a better mousetrap?, Neuroscience, 2005, 136, 971-989

  • [17] Thompson H.J., Lifshitz J., Marklund N., Grady M.S., Graham D.I., Hovda D.A., et al., Lateral fluid percussion brain injury: a 15-year review and evaluation, J. Neurotrauma, 2005, 22, 42-75

  • [18] Huisman T.A., Schwamm L.H., Schaefer P.W., Koroshetz W.J., Shetty- Alva N., Ozsunar Y., et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, Am. J. Neuroradiol., 2004, 25, 370-376

  • [19] Kraus M.F., Susmaras T., Caughlin B.P., Walker C.J., Sweeney J.A., Little D.M., White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study, Brain, 2007, 130, 2508-2519 [Crossref]

  • [20] Xiong Y., Mahmood A., Chopp M., Emerging treatments for traumatic brain injury, Expert Opin. Emerg. Drugs, 2009, 14, 67-84 [Crossref]

  • [21] Dietrich W.D., Atkins C.M., Bramlett H.M., Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia, J. Neurotrauma, 2009, 26, 301-312 [Crossref]

  • [22] Bernard S.A., Gray T.W., Buist M.D., Jones B.M., Silvester W., Gutteridge G., et al., Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia, N. Engl. J. Med., 2002, 346, 557-563

  • [23] Gluckman P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., et al., Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial, Lancet, 2005, 365, 663-670

  • [24] Hypothermia after Cardiac Arrest Study Group, Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest, N. Engl. J. Med., 2002, 346, 549-556

  • [25] Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., et al., Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy, N. Engl. J. Med., 2005, 353, 1574- 1584

  • [26] Sakurai A., Atkins C.M., Alonso O.F., Bramlett H.M., Dietrich W.D., Mild hyperthermia worsens the neuropathological damage associated with mild traumatic brain injury in rats, J. Neurotrauma, 2012, 29, 313-321 [Crossref]

  • [27] Ozgunen K.T., Kurdak S.S., Maughan R.J., Zeren C., Korkmaz S., Yazici Z., et al., Effect of hot environmental conditions on physical activity patterns and temperature response of football players, Scand. J. Med. Sci. Sports, 2010, 20 (Suppl. 3), 140-147

  • [28] Coris E.E., Mehra S., Walz S.M., Duncanson R., Jennings J., Nugent D., et al., Gastrointestinal temperature trends in football linemen during physical exertion under heat stress, South Med. J., 2009, 102, 569-574 [Crossref]

  • [29] Shirreffs S.M., Sawka M.N., Stone M., Water and electrolyte needs for football training and match-play, J. Sports Sci., 2006, 24, 699-707 [Crossref]

  • [30] Ekblom B., Applied physiology of soccer, Sports Med., 1986, 3, 50-60 [Crossref]

  • [31] Fowkes Godek S., Godek J.J., Bartolozzi A.R., Thermal responses in football and cross-country athletes during their respective practices in a hot environment, J. Athl. Train., 2004, 39, 235-240

  • [32] Godek S.F., Bartolozzi A.R., Godek J.J., Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment, Br. J. Sports Med., 2005, 39, 205-211, discussion 205- 211

  • [33] Godek S.F., Godek J.J., Bartolozzi A.R., Hydration status in college football players during consecutive days of twice-a-day preseason practices, Am. J. Sports Med., 2005, 33, 843-851 [Crossref]

  • [34] Godek S.F., Bartolozzi A.R., Burkholder R., Sugarman E., Dorshimer G., Core temperature and percentage of dehydration in professional football linemen and backs during preseason practices, J. Athl. Train., 2006, 41, 8-14, discussion 14-17

  • [35] Wang H., Wang B., Normoyle K.P., Jackson K., Spitler K., Sharrock M.F., et al., Brain temperature and its fundamental properties: a review for clinical neuroscientists, Front. Neurosci., 2014, 8, 307

  • [36] Hayward J.N., Baker M.A., A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals, Brain Res., 1969, 16, 417-440 [Crossref]

  • [37] Brooks V.B., Study of brain function by local, reversible cooling, Rev. Physiol. Biochem. Pharmacol., 1983, 95, 1-109

  • [38] Coleshaw S.R., Van Someren R.N., Wolff A.H., Davis H.M., Keatinge W.R., Impaired memory registration and speed of reasoning caused by low body temperature, J. Appl. Physiol., 1983, 55, 27-31

  • [39] Saltin B., Gagge A.P., Bergh U., Stolwijk J.A., Body temperatures and sweating during exhaustive exercise, J. Appl. Physiol., 1972, 32, 635- 643

  • [40] Nybo L., Secher N.H., Nielsen B., Inadequate heat release from the human brain during prolonged exercise with hyperthermia, J. Physiol., 2002, 545, 697-704

  • [41] Nybo L., Nielsen B., Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans, J. Physiol., 2001, 534, 279-286

  • [42] White M.D., Cabanac M., Exercise hyperpnea and hyperthermia in humans, J. Appl. Physiol., 1996, 81, 1249-1254

  • [43] Rasmussen P., Stie H., Nielsen B., Nybo L., Enhanced cerebral CO2 reactivity during strenuous exercise in man, Eur. J. Appl. Physiol., 2006, 96, 299-304 [Crossref]

  • [44] Nybo L., Moller K., Volianitis S., Nielsen B., Secher N.H., Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans, J. Appl. Physiol., 2002, 93, 58-64 [Crossref]

  • [45] Wilson T.E., Cui J., Zhang R., Crandall C.G., Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291, R1443-1448

  • [46] Madsen P.L., Sperling B.K., Warming T., Schmidt J.F., Secher N.H., Wildschiødtz G., et al., Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise, J. Appl. Physiol., 1993, 74, 245-250

  • [47] Williamson J.W., McColl R., Mathews D., Ginsburg M., Mitchell J.H., Activation of the insular cortex is affected by the intensity of exercise, J. Appl. Physiol., 1999, 87, 1213-1219

  • [48] Ide K., Secher N.H., Cerebral blood flow and metabolism during exercise, Prog. Neurobiol., 2000, 61, 397-414 [Crossref]

  • [49] Hootman J.M., Dick R., Agel J., Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives, J. Athl. Train., 2007, 42, 311-319

  • [50] Daneshvar D.H., Nowinski C.J., McKee A.C., Cantu R.C., The epidemiology of sport-related concussion, Clin. Sports Med., 2011, 30, 1-17 [Crossref]

  • [51] Prins M.L., Alexander D., Giza C.C., Hovda D.A., Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability, J. Neurotrauma, 2013, 30, 30-38 [Crossref]

  • [52] Longhi L., Saatman K.E., Fujimoto S., Raghupathi R., Meaney D.F., Davis J., et al., Temporal window of vulnerability to repetitive experimental concussive brain injury, Neurosurgery, 2005, 56, 364-374, discussion 364-374 [Crossref]

  • [53] Dietrich W.D., Bramlett H.M., The evidence for hypothermia as a neuroprotectant in traumatic brain injury, Neurotherapeutics, 2010, 7, 43-50 [Crossref]

  • [54] Jiang J.Y., Gao G.Y., Li W.P., Yu M.K., Zhu C., Early indicators of prognosis in 846 cases of severe traumatic brain injury, J. Neurotrauma, 2002, 19, 869-874

  • [55] Hajat C., Hajat S., Sharma P., Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients, Stroke, 2000, 31, 410- 414 [Crossref]

  • [56] Li J., Jiang J.Y., Chinese Head Trauma Data Bank: effect of hyperthermia on the outcome of acute head trauma patients, J. Neurotrauma, 2012, 29, 96-100 [Crossref]

  • [57] Sharma H.S., Hoopes P.J., Hyperthermia induced pathophysiology of the central nervous system, Int. J. Hyperthermia, 2003, 19, 325-354 [Crossref]

  • [58] Barkhoudarian G., Hovda D.A., Giza C.C., The molecular pathophysiology of concussive brain injury, Clin. Sports Med., 2011, 30, 33-48 [Crossref]

  • [59] Yoshino A., Hovda D.A., Kawamata T., Katayama Y., Becker D.P., Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state, Brain Res., 1991, 561, 106-119

  • [60] Kawamata T., Katayama Y., Hovda D.A., Yoshino A., Becker D.P., Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids, Brain Res., 1995, 674, 196- 204

  • [61] Katayama Y., Becker D.P., Tamura T., Hovda D.A., Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury, J. Neurosurg., 1990, 73, 889-900 [Crossref]

  • [62] Giza C.C., Hovda D.A., The neurometabolic cascade of concussion, J. Athl. Train., 2001, 36228-235

  • [63] Sharma H.S., Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches, J. Neural Transm., 2006, 113, 497-519 [Crossref]

  • [64] Carlsson C., Hägerdal M., Siesjö B.K., The effect of hyperthermia upon oxygen consumption and upon organic phosphates, glycolytic metabolites, citric and cycle intermediates and associated amino acids in rat cerebral cortes, J. Neurochem., 1976, 26, 1001-1006 [Crossref]

  • [65] Katsumura H., Kabuto M., Hosotani K., Handa Y., Kobayashi H., Kubota T., The influence of total body hyperthermia on brain haemodynamics and blood-brain barrier in dogs, Acta Neurochir., 1995, 135, 62-69

  • [66] Rasmussen P, Nybo L, Volianitis S, Møller K, Secher NH, Gjedde A: Cerebral oxygenation is reduced during hyperthermic exercise in humans, Acta Physiol., 2010, 199, 63-70

  • [67] Bergsneider M., Hovda D.A., Lee S.M., Kelly D.F., McArthur D.L., Vespa P.M., et al., Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury, J. Neurotrauma, 2000, 17, 389-401 [Crossref]

  • [68] Junger E.C., Newell D.W., Grant G.A., Avellino A.M., Ghatan S., Douville C.M., et al., Cerebral autoregulation following minor head injury, J. Neurosurg., 1997, 86, 425-432 [Crossref]

  • [69] Strebel S., Lam A.M., Matta B.F., Newell D.W., Impaired cerebral autoregulation after mild brain injury, Surg. Neurol., 1997, 47, 128- 131

  • [70] Sharma H.S., Sharma A., Mossler H., Muresanu D.F., Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermiainduced neurotoxicity: modulatory roles of co-morbidity factors and nanoparticle intoxication, Int. Rev. Neurobiol., 2012, 102, 249-276 [Crossref]

  • [71] Dietrich W.D., Alonso O., Halley M., Busto R., Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats, Neurosurgery, 1996, 38, 533-541, discussion 541

  • [72] Suzuki T., Bramlett H.M., Ruenes G., Dietrich W.D., The effects of early post-traumatic hyperthermia in female and ovariectomized rats, J. Neurotrauma, 2004, 21, 842-853 [Crossref]

  • [73] Northoff H., Weinstock C., Berg A., The cytokine response to strenuous exercise, Int. J. Sports Med., 1994, 15 (Suppl. 3), S167-171 [Crossref]

  • [74] Bomalaski J.S., Ford T., Hudson A.P., Clark M.A., Phospholipase A2- activating protein induces the synthesis of IL-1 and TNF in human monocytes, J. Immunol., 1995, 154, 4027-4031

  • [75] Bazan N.G., Musto A.E., Knott E.J., Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity, Mol. Neurobiol., 2011, 44, 216-222

  • [76] Wierenga P.K., Stege G.J., Kampinga H.H., Konings A.W., Intracellular free calcium concentrations in cell suspensions during hyperthermia, Eur. J. Cell Biol., 1994, 63, 68-76

  • [77] Kiang J.G., Ding X.Z., McClain D.E., Thermotolerance attenuates heat-induced increases in [Ca2+]i and HSP-72 synthesis but not heatinduced intracellular acidification in human A-431 cells, J. Investig. Med., 1996, 44, 53-63

  • [78] Obrenovitch T.P., Urenjak J., Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury?, J. Neurotrauma, 1997, 14, 677-698 [Crossref]

  • [79] Artal-Sanz M., Tavernarakis N., Proteolytic mechanisms in necrotic cell death and neurodegeneration, FEBS Lett., 2005, 579, 3287-3296

  • [80] Praticò D., Reiss P., Tang L.X., Sung S., Rokach J., McIntosh T.K., Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury, J. Neurochem., 2002, 80, 894- 898 [Crossref]

  • [81] Wang H., Olivero W., Lanzino G., Elkins W., Rose J., Honings D., et al., Rapid and selective cerebral hypothermia achieved using a cooling helmet, J. Neurosurg., 2004, 100, 272-277 [Crossref]

  • [82] Harris O.A., Muh C.R., Surles M.C., Pan Y., Rozycki G., Macleod J., et al., Discrete cerebral hypothermia in the management of traumatic brain injury: a randomized controlled trial, J. Neurosurg., 2009, 110, 1256-1264 [Crossref]

  • [83] Wang H., Olivero W., Elkins W., Traumatic brain injury and hypothermia, J. Neurosurg., 2012, 116, 1159-1160 [Crossref]

  • [84] Gowda N.K., Agrawal D., Bal C., Chandrashekar N., Tripati M., Bandopadhyaya G.P., et al., Technetium Tc-99m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study, Am. J. Neuroradiol., 2006, 27, 447-451

  • [85] Maugans T.A., Farley C., Altaye M., Leach J., Cecil K.M., Pediatric sports-related concussion produces cerebral blood flow alterations, Pediatrics, 2012, 129, 28-37 [Crossref]

  • [86] Wang H., Wang D., Lanzino G., Elkins W., Olivero W., Differential interhemispheric cooling and ICP compartmentalization in a patient with left ICA occlusion, Acta Neurochir., 2006, 148, 681-683, discussion 683 [Crossref]

  • [87] Covaciu L., Weis J., Bengtsson C., Allers M., Lunderquist A., Ahlström H., et al., Brain temperature in volunteers subjected to intranasal cooling, Intensive Care Med., 2011, 37, 1277-1284

  • [88] Connor N.P., Abbs J.H., Orofacial proprioception: analyses of cutaneous mechanoreceptor population properties using artificial neural networks, J. Commun. Disord., 1998, 31, 535-542, 553 [Crossref]

  • [89] Kawakami T., Ishihara M., Mihara M., Distribution density of intraepidermal nerve fibers in normal human skin, J. Dermatol., 2001, 28, 63-70 [Crossref]

  • [90] Diesel D.A., Tucker A., Robertshaw D., Cold-induced changes in breathing pattern as a strategy to reduce respiratory heat loss, J. Appl. Physiol., 1990, 69, 1946-1952

  • [91] McMurtry I.F., Reeves J.T., Will D.H., Grover R.F., Hemodynamic and ventilatory effects of skin-cooling in cattle, Experientia, 1975, 31, 1303-1304 [Crossref]

  • [92] Miyazawa T., Horiuchi M., Ichikawa D., Subudhi A.W., Sugawara J., Ogoh S., Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow, Front. Physiol., 2012, 3, 308

  • [93] Ogoh S., Ainslie P.N., Cerebral blood flow during exercise: mechanisms of regulation, J. Appl. Physiol., 2009, 107, 1370-1380 [Crossref]

  • [94] Secher N.H., Seifert T., Van Lieshout J.J., Cerebral blood flow and metabolism during exercise: implications for fatigue, J. Appl. Physiol., 2008, 104, 306-314

  • [95] Low D., Purvis A., Reilly T., Cable N.T., The prolactin responses to active and passive heating in man, Exp. Physiol., 2005, 90, 909-917

  • [96] Pitsiladis Y.P., Strachan A.T., Davidson I., Maughan R.J., Hyperprolactinaemia during prolonged exercise in the heat: evidence for a centrally mediated component of fatigue in trained cyclists, Exp. Physiol., 2002, 87, 215-226

  • [97] Bridge M.W., Weller A.S., Rayson M., Jones D.A., Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function, Eur. J. Appl. Physiol., 2003, 89, 451-459 [Crossref]

  • [98] Hori T., Harada Y., Responses of midbrain raphe neurons to local temperature, Pflugers Arch., 1976, 364, 205-207

  • [99] Kmieciak-Kolada K., Felinska W., Stachura Z., Majchrzak H., Herman Z.S., Concentration of biogenic amines and their metabolites in different parts of brain after experimental cerebral concussion, Pol. J. Pharmacol. Pharm., 1987, 39, 47-53

  • [100] McAllister T.W., Flashman L.A., McDonald B.C., Ferrell R.B., Tosteson T.D., Yanofsky N.N., et al., Dopaminergic challenge with bromocriptine one month after mild traumatic brain injury: altered working memory and BOLD response, J. Neuropsychiatry Clin. Neurosci., 2011, 23, 277- 286 [Crossref]

  • [101] Wagner A.K., Chen X., Kline A.E., Li Y., Zafonte R.D., Dixon C.E., Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury, Exp. Neurol., 2005, 195, 475-483

  • [102] Wagner A.K., Sokoloski J.E., Ren D., Chen X., Khan A.S., Zafonte R.D., et al., Controlled cortical impact injury affects dopaminergic transmission in the rat striatum, J. Neurochem., 2005, 95, 457-465 [Crossref]

  • [103] McIntosh T.K., Neurochemical sequelae of traumatic brain injury: therapeutic implications, Cerebrovasc. Brain Metab. Rev., 1994, 6, 109-162

  • [104] Shen H., Harvey B.K., Chiang Y.H., Pick C.G., Wang Y., Methamphetamine potentiates behavioral and electrochemical responses after mild traumatic brain injury in mice, Brain Res., 2011, 1368, 248-253

  • [105] Frenette A.J., Kanji S., Rees L., Williamson D.R., Perreault M.M., Turgeon A.F., et al., Efficacy and safety of dopamine agonists in traumatic brain injury: a systematic review of randomized controlled trials, J. Neurotrauma, 2012, 29, 1-18 [Crossref]

  • [106] Bales J.W., Kline A.E., Wagner A.K., Dixon C.E., Targeting dopamine in acute traumatic brain injury, Open Drug Discov. J., 2010, 2, 119-128

  • [107] Markianos M., Seretis A., Kotsou A., Christopoulos M., CSF neurotransmitter metabolites in comatose head injury patients during changes in their clinical state, Acta Neurochir.,1996, 138, 57- 59

  • [108] Ashman T.A., Cantor J.B., Gordon W.A., Spielman L., Flanagan S., Ginsberg A., et al., A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury, Arch. Phys. Med. Rehabil., 2009, 90, 733-740 [Crossref]

  • [109] Brisson G.R., Boisvert P., Peronnet F., Quirion A., Senecal L., Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress, Eur. J. Appl. Physiol. Occup. Physiol., 1989, 58, 816-820 [Crossref]

  • [110] Mundel T., Hooper P.L., Bunn S.J., Jones D.A., The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans, Exp. Physiol., 2006, 91, 1007- 1014

  • [111] Mundel T., Bunn S.J., Hooper P.L., Jones D.A., The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response, Exp. Physiol., 2007, 92, 187-195

  • [112] Wegmann M., Faude O., Poppendieck W., Hecksteden A., Fröhlich M., Meyer T., Pre-cooling and sports performance: a meta-analytical review, Sports Med., 2012, 42, 545-564 [Crossref]

  • [113] Selkirk G.A., McLellan T.M., Wong J., Active versus passive cooling during work in warm environments while wearing firefighting protective clothing, J. Occup. Environ. Hyg., 2004, 1, 521-531

  • [114] Butler P.J., Jones D.R., Physiology of diving of birds and mammals, Physiol. Rev., 1997, 77, 837-899

  • [115] Tipton M.J., Kelleher P.C., Golden F.S., Supraventricular arrhythmias following breath-hold submersions in cold water, Undersea Hyperb. Med., 1994, 21, 305-313

  • [116] Koehn J., Kollmar R., Cimpianu C.L., Kallmünzer B., Moeller S., Schwab S., et al., Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure, Stroke, 2012, 43, 2142-2148 [Crossref]

  • [117] Khurana R.K., Watabiki S., Hebel J.R., Toro R., Nelson E., Cold face test in the assessment of trigeminal-brainstem-vagal function in humans, Ann. Neurol., 1980, 7, 144-149

  • [118] Kawakami Y., Natelson B.H., DuBois A.R., Cardiovascular effects of face immersion and factors affecting diving reflex in man, J. Appl. Physiol., 1967, 23, 964-970

  • [119] Collins M.W., Grindel S.H., Lovell M.R., Dede D.E., Moser D.J., Phalin B.R., et al., Relationship between concussion and neuropsychological performance in college football players, JAMA, 1999, 282, 964-970

  • [120] Maddocks D., Saling M., Neuropsychological deficits following concussion, Brain Inj., 1996, 10, 99-103

  • [121] Macciocchi S.N., Barth J.T., Alves W., Rimel R.W., Jane J.A., Neuropsychological functioning and recovery after mild head injury in collegiate athletes, Neurosurgery, 1996, 39, 510-514

  • [122] Craig A.D., Chen K., Bandy D., Reiman E.M., Thermosensory activation of insular cortex, Nat. Neurosci., 2000, 3, 184-190 [Crossref]

  • [123] Rolls E.T., Grabenhorst F., Parris B.A., Warm pleasant feelings in the brain, Neuroimage, 2008, 41, 1504-1513 [Crossref]

  • [124] Guest S., Grabenhorst F., Essick G., Chen Y., Young M., McGlone F., et al., Human cortical representation of oral temperature, Physiol. Behav., 2007, 92, 975-984 [Crossref]

  • [125] Chu Z., Wilde E.A., Hunter J.V., McCauley S.R., Bigler E.D., Troyanskaya M., et al., Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents, Am. J. Neuroradiol., 2010, 31, 340-346 [Crossref]

  • [126] Mayer A.R., Ling J., Mannell M.V., Gasparovic C., Phillips J.P., Doezema D., et al., A prospective diffusion tensor imaging study in mild traumatic brain injury, Neurology, 2010, 74, 643-650 [Crossref]

  • [127] Wilde E.A., Ramos M.A., Yallampalli R., Bigler E.D., McCauley S.R., Chu Z., et al., Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury, Dev. Neuropsychol., 2010, 35, 333-351

  • [128] Henry L.C., Tremblay J., Tremblay S., Lee A., Brun C., Lepore N., et al., Acute and chronic changes in diffusivity measures after sports concussion, J. Neurotrauma, 2011, 28, 2049-2059 [Crossref]

  • [129] Ducreux D., Huynh I., Fillard P., Renoux J., Petit-Lacour M.C., Marsot- Dupuch K., et al., Brain MR diffusion tensor imaging and fibre tracking to differentiate between two diffuse axonal injuries, Neuroradiology, 2005, 47, 604-608 [Crossref]

  • [130] Ducreux D., Nasser G., Lacroix C., Adams D., Lasjaunias P., MR diffusion tensor imaging, fiber tracking, and single-voxel spectroscopy findings in an unusual MELAS case, Am. J. Neuroradiol., 2005, 26, 1840-1844

  • [131] Lee J.W., Choi C.G., Chun M.H., Usefulness of diffusion tensor imaging for evaluation of motor function in patients with traumatic brain injury: three case studies, J. Head Trauma Rehabil., 2006, 21, 272-278

  • [132] Le T.H., Mukherjee P., Henry R.G., Berman J.I., Ware M., Manley G.T., Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report, Neurosurgery, 2005, 56, 189

  • [133] Song S.K., Sun S.W., Ramsbottom M.J., Chang C., Russell J., Cross A.H., Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water, Neuroimage, 2002, 17, 1429- 1436 [Crossref]

About the article

Received: 2014-11-09

Accepted: 2014-11-29

Published Online: 2015-01-14

Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0004. Export Citation

©2015 Huan Wang et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in