Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

A novel head-neck cooling device for concussion injury in contact sports

Huan Wang
  • Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
  • Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bonnie Wang
  • Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kevin Jackson
  • Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claire M. Miller / Linda Hasadsri / Daniel Llano
  • Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign, Carle Foundation Hospital, Urbana, USA
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rachael Rubin / Jarred Zimmerman / Curtis Johnson
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brad Sutton
  • The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
  • Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
  • Department of Electrical and Computer Engineering, University of Illinois at Urbana- Champaign, Urbana, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-14 | DOI: https://doi.org/10.1515/tnsci-2015-0004

Abstract

Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.

Keywords: Head-neck cooling; Mild traumatic brain injury; Brain hypothermia; Brain temperature; Sports

References

  • [1] Langlois J.A., Rutland-Brown W., Wald M.M., The epidemiology and impact of traumatic brain injury: a brief overview, J. Head Trauma Rehabil., 2006, 21, 375-378 Google Scholar

  • [2] Thurman D.J., Alverson C., Dunn K.A., Guerrero J., Sniezek J.E., Traumatic brain injury in the United States: a public health perspective, J. Head Trauma Rehabil., 1999, 14, 602-615 Google Scholar

  • [3] Maruta J., Lee S.W., Jacobs E.F., Ghajar J., A unified science of concussion, Ann. NY Acad. Sci., 2010, 1208, 58-66 Google Scholar

  • [4] Wood R.L., Understanding the ‘miserable minority’: a diasthesisstress paradigm for post-concussional syndrome, Brain Inj., 2004, 18, 1135-1153 Google Scholar

  • [5] Iverson G.L., Outcome from mild traumatic brain injury, Curr. Opin. Psychiatry, 2005, 18, 301-317 CrossrefGoogle Scholar

  • [6] Lovell M., The management of sports-related concussion: current status and future trends, Clin. Sports Med., 2009, 28, 95-111 CrossrefGoogle Scholar

  • [7] Solomon G.S., Ott S.D., Lovell M.R., Long-term neurocognitive dysfunction in sports: what is the evidence?, Clin. Sports Med., 2011, 30, 165-177 CrossrefGoogle Scholar

  • [8] Gavett B.E., Stern R.A., McKee A.C., Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma, Clin. Sports Med., 2011, 30, 179-188 CrossrefGoogle Scholar

  • [9] McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, J. Neuropathol. Exp. Neurol., 2009, 68, 709-735 Google Scholar

  • [10] Talavage T.M., Nauman E., Breedlove E.L., Yoruk U., Dye A.E., Morigaki K., et al., Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion, J. Neurotrauma, 2014, 31, 327-338 CrossrefGoogle Scholar

  • [11] McAllister T.W., Flashman L.A., Maerlender A., Greenwald R.M., Beckwith J.G., Tosteson T.D., et al., Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes, Neurology, 2012, 78, 1777-1784 CrossrefGoogle Scholar

  • [12] Guskiewicz K.M., Marshall S.W., Bailes J., McCrea M., Harding H.P.Jr., Matthews A., et al., Recurrent concussion and risk of depression in retired professional football players, Med. Sci. Sports Exerc., 2007, 39, 903-909 CrossrefGoogle Scholar

  • [13] Omalu B.I., DeKosky S.T., Hamilton R.L., Minster R.L., Kamboh M.I., Shakir A.M., et al., Chronic traumatic encephalopathy in a national football league player: part II, Neurosurgery, 2006, 59, 1086-1092, discussion 1092-1093 Google Scholar

  • [14] Omalu B.I., Bailes J., Hammers J.L., Fitzsimmons R.P., Chronic traumatic encephalopathy, suicides and parasuicides in professional American athletes: the role of the forensic pathologist, Am. J. Forensic Med. Pathol., 2010, 31, 130-132 CrossrefGoogle Scholar

  • [15] Jane J.A., Steward O., Gennarelli T., Axonal degeneration induced by experimental noninvasive minor head injury, J. Neurosurg., 1985, 62, 96-100 CrossrefGoogle Scholar

  • [16] Morales D.M., Marklund N., Lebold D., Thompson H.J., Pitkänen A., Maxwell W.L., et al., Experimental models of traumatic brain injury: do we really need to build a better mousetrap?, Neuroscience, 2005, 136, 971-989 Google Scholar

  • [17] Thompson H.J., Lifshitz J., Marklund N., Grady M.S., Graham D.I., Hovda D.A., et al., Lateral fluid percussion brain injury: a 15-year review and evaluation, J. Neurotrauma, 2005, 22, 42-75 Google Scholar

  • [18] Huisman T.A., Schwamm L.H., Schaefer P.W., Koroshetz W.J., Shetty- Alva N., Ozsunar Y., et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, Am. J. Neuroradiol., 2004, 25, 370-376 Google Scholar

  • [19] Kraus M.F., Susmaras T., Caughlin B.P., Walker C.J., Sweeney J.A., Little D.M., White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study, Brain, 2007, 130, 2508-2519 CrossrefGoogle Scholar

  • [20] Xiong Y., Mahmood A., Chopp M., Emerging treatments for traumatic brain injury, Expert Opin. Emerg. Drugs, 2009, 14, 67-84 CrossrefGoogle Scholar

  • [21] Dietrich W.D., Atkins C.M., Bramlett H.M., Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia, J. Neurotrauma, 2009, 26, 301-312 CrossrefGoogle Scholar

  • [22] Bernard S.A., Gray T.W., Buist M.D., Jones B.M., Silvester W., Gutteridge G., et al., Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia, N. Engl. J. Med., 2002, 346, 557-563 Google Scholar

  • [23] Gluckman P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., et al., Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial, Lancet, 2005, 365, 663-670 Google Scholar

  • [24] Hypothermia after Cardiac Arrest Study Group, Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest, N. Engl. J. Med., 2002, 346, 549-556 Google Scholar

  • [25] Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., et al., Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy, N. Engl. J. Med., 2005, 353, 1574- 1584 Google Scholar

  • [26] Sakurai A., Atkins C.M., Alonso O.F., Bramlett H.M., Dietrich W.D., Mild hyperthermia worsens the neuropathological damage associated with mild traumatic brain injury in rats, J. Neurotrauma, 2012, 29, 313-321 CrossrefGoogle Scholar

  • [27] Ozgunen K.T., Kurdak S.S., Maughan R.J., Zeren C., Korkmaz S., Yazici Z., et al., Effect of hot environmental conditions on physical activity patterns and temperature response of football players, Scand. J. Med. Sci. Sports, 2010, 20 (Suppl. 3), 140-147 Google Scholar

  • [28] Coris E.E., Mehra S., Walz S.M., Duncanson R., Jennings J., Nugent D., et al., Gastrointestinal temperature trends in football linemen during physical exertion under heat stress, South Med. J., 2009, 102, 569-574 CrossrefGoogle Scholar

  • [29] Shirreffs S.M., Sawka M.N., Stone M., Water and electrolyte needs for football training and match-play, J. Sports Sci., 2006, 24, 699-707 CrossrefGoogle Scholar

  • [30] Ekblom B., Applied physiology of soccer, Sports Med., 1986, 3, 50-60 CrossrefGoogle Scholar

  • [31] Fowkes Godek S., Godek J.J., Bartolozzi A.R., Thermal responses in football and cross-country athletes during their respective practices in a hot environment, J. Athl. Train., 2004, 39, 235-240 Google Scholar

  • [32] Godek S.F., Bartolozzi A.R., Godek J.J., Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment, Br. J. Sports Med., 2005, 39, 205-211, discussion 205- 211 Google Scholar

  • [33] Godek S.F., Godek J.J., Bartolozzi A.R., Hydration status in college football players during consecutive days of twice-a-day preseason practices, Am. J. Sports Med., 2005, 33, 843-851 CrossrefGoogle Scholar

  • [34] Godek S.F., Bartolozzi A.R., Burkholder R., Sugarman E., Dorshimer G., Core temperature and percentage of dehydration in professional football linemen and backs during preseason practices, J. Athl. Train., 2006, 41, 8-14, discussion 14-17 Google Scholar

  • [35] Wang H., Wang B., Normoyle K.P., Jackson K., Spitler K., Sharrock M.F., et al., Brain temperature and its fundamental properties: a review for clinical neuroscientists, Front. Neurosci., 2014, 8, 307 Google Scholar

  • [36] Hayward J.N., Baker M.A., A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals, Brain Res., 1969, 16, 417-440 CrossrefGoogle Scholar

  • [37] Brooks V.B., Study of brain function by local, reversible cooling, Rev. Physiol. Biochem. Pharmacol., 1983, 95, 1-109 Google Scholar

  • [38] Coleshaw S.R., Van Someren R.N., Wolff A.H., Davis H.M., Keatinge W.R., Impaired memory registration and speed of reasoning caused by low body temperature, J. Appl. Physiol., 1983, 55, 27-31 Google Scholar

  • [39] Saltin B., Gagge A.P., Bergh U., Stolwijk J.A., Body temperatures and sweating during exhaustive exercise, J. Appl. Physiol., 1972, 32, 635- 643 Google Scholar

  • [40] Nybo L., Secher N.H., Nielsen B., Inadequate heat release from the human brain during prolonged exercise with hyperthermia, J. Physiol., 2002, 545, 697-704 Google Scholar

  • [41] Nybo L., Nielsen B., Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans, J. Physiol., 2001, 534, 279-286 Google Scholar

  • [42] White M.D., Cabanac M., Exercise hyperpnea and hyperthermia in humans, J. Appl. Physiol., 1996, 81, 1249-1254 Google Scholar

  • [43] Rasmussen P., Stie H., Nielsen B., Nybo L., Enhanced cerebral CO2 reactivity during strenuous exercise in man, Eur. J. Appl. Physiol., 2006, 96, 299-304 CrossrefGoogle Scholar

  • [44] Nybo L., Moller K., Volianitis S., Nielsen B., Secher N.H., Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans, J. Appl. Physiol., 2002, 93, 58-64 CrossrefGoogle Scholar

  • [45] Wilson T.E., Cui J., Zhang R., Crandall C.G., Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291, R1443-1448 Google Scholar

  • [46] Madsen P.L., Sperling B.K., Warming T., Schmidt J.F., Secher N.H., Wildschiødtz G., et al., Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise, J. Appl. Physiol., 1993, 74, 245-250 Google Scholar

  • [47] Williamson J.W., McColl R., Mathews D., Ginsburg M., Mitchell J.H., Activation of the insular cortex is affected by the intensity of exercise, J. Appl. Physiol., 1999, 87, 1213-1219 Google Scholar

  • [48] Ide K., Secher N.H., Cerebral blood flow and metabolism during exercise, Prog. Neurobiol., 2000, 61, 397-414 CrossrefGoogle Scholar

  • [49] Hootman J.M., Dick R., Agel J., Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives, J. Athl. Train., 2007, 42, 311-319 Google Scholar

  • [50] Daneshvar D.H., Nowinski C.J., McKee A.C., Cantu R.C., The epidemiology of sport-related concussion, Clin. Sports Med., 2011, 30, 1-17 CrossrefGoogle Scholar

  • [51] Prins M.L., Alexander D., Giza C.C., Hovda D.A., Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability, J. Neurotrauma, 2013, 30, 30-38 CrossrefGoogle Scholar

  • [52] Longhi L., Saatman K.E., Fujimoto S., Raghupathi R., Meaney D.F., Davis J., et al., Temporal window of vulnerability to repetitive experimental concussive brain injury, Neurosurgery, 2005, 56, 364-374, discussion 364-374 CrossrefGoogle Scholar

  • [53] Dietrich W.D., Bramlett H.M., The evidence for hypothermia as a neuroprotectant in traumatic brain injury, Neurotherapeutics, 2010, 7, 43-50 CrossrefGoogle Scholar

  • [54] Jiang J.Y., Gao G.Y., Li W.P., Yu M.K., Zhu C., Early indicators of prognosis in 846 cases of severe traumatic brain injury, J. Neurotrauma, 2002, 19, 869-874 Google Scholar

  • [55] Hajat C., Hajat S., Sharma P., Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients, Stroke, 2000, 31, 410- 414 CrossrefGoogle Scholar

  • [56] Li J., Jiang J.Y., Chinese Head Trauma Data Bank: effect of hyperthermia on the outcome of acute head trauma patients, J. Neurotrauma, 2012, 29, 96-100 CrossrefGoogle Scholar

  • [57] Sharma H.S., Hoopes P.J., Hyperthermia induced pathophysiology of the central nervous system, Int. J. Hyperthermia, 2003, 19, 325-354 CrossrefGoogle Scholar

  • [58] Barkhoudarian G., Hovda D.A., Giza C.C., The molecular pathophysiology of concussive brain injury, Clin. Sports Med., 2011, 30, 33-48 CrossrefGoogle Scholar

  • [59] Yoshino A., Hovda D.A., Kawamata T., Katayama Y., Becker D.P., Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state, Brain Res., 1991, 561, 106-119 Google Scholar

  • [60] Kawamata T., Katayama Y., Hovda D.A., Yoshino A., Becker D.P., Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids, Brain Res., 1995, 674, 196- 204 Google Scholar

  • [61] Katayama Y., Becker D.P., Tamura T., Hovda D.A., Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury, J. Neurosurg., 1990, 73, 889-900 CrossrefGoogle Scholar

  • [62] Giza C.C., Hovda D.A., The neurometabolic cascade of concussion, J. Athl. Train., 2001, 36228-235 Google Scholar

  • [63] Sharma H.S., Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches, J. Neural Transm., 2006, 113, 497-519 CrossrefGoogle Scholar

  • [64] Carlsson C., Hägerdal M., Siesjö B.K., The effect of hyperthermia upon oxygen consumption and upon organic phosphates, glycolytic metabolites, citric and cycle intermediates and associated amino acids in rat cerebral cortes, J. Neurochem., 1976, 26, 1001-1006 CrossrefGoogle Scholar

  • [65] Katsumura H., Kabuto M., Hosotani K., Handa Y., Kobayashi H., Kubota T., The influence of total body hyperthermia on brain haemodynamics and blood-brain barrier in dogs, Acta Neurochir., 1995, 135, 62-69 Google Scholar

  • [66] Rasmussen P, Nybo L, Volianitis S, Møller K, Secher NH, Gjedde A: Cerebral oxygenation is reduced during hyperthermic exercise in humans, Acta Physiol., 2010, 199, 63-70 Google Scholar

  • [67] Bergsneider M., Hovda D.A., Lee S.M., Kelly D.F., McArthur D.L., Vespa P.M., et al., Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury, J. Neurotrauma, 2000, 17, 389-401 CrossrefGoogle Scholar

  • [68] Junger E.C., Newell D.W., Grant G.A., Avellino A.M., Ghatan S., Douville C.M., et al., Cerebral autoregulation following minor head injury, J. Neurosurg., 1997, 86, 425-432 CrossrefGoogle Scholar

  • [69] Strebel S., Lam A.M., Matta B.F., Newell D.W., Impaired cerebral autoregulation after mild brain injury, Surg. Neurol., 1997, 47, 128- 131 Google Scholar

  • [70] Sharma H.S., Sharma A., Mossler H., Muresanu D.F., Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermiainduced neurotoxicity: modulatory roles of co-morbidity factors and nanoparticle intoxication, Int. Rev. Neurobiol., 2012, 102, 249-276 CrossrefGoogle Scholar

  • [71] Dietrich W.D., Alonso O., Halley M., Busto R., Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats, Neurosurgery, 1996, 38, 533-541, discussion 541 Google Scholar

  • [72] Suzuki T., Bramlett H.M., Ruenes G., Dietrich W.D., The effects of early post-traumatic hyperthermia in female and ovariectomized rats, J. Neurotrauma, 2004, 21, 842-853 CrossrefGoogle Scholar

  • [73] Northoff H., Weinstock C., Berg A., The cytokine response to strenuous exercise, Int. J. Sports Med., 1994, 15 (Suppl. 3), S167-171 CrossrefGoogle Scholar

  • [74] Bomalaski J.S., Ford T., Hudson A.P., Clark M.A., Phospholipase A2- activating protein induces the synthesis of IL-1 and TNF in human monocytes, J. Immunol., 1995, 154, 4027-4031 Google Scholar

  • [75] Bazan N.G., Musto A.E., Knott E.J., Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity, Mol. Neurobiol., 2011, 44, 216-222 Google Scholar

  • [76] Wierenga P.K., Stege G.J., Kampinga H.H., Konings A.W., Intracellular free calcium concentrations in cell suspensions during hyperthermia, Eur. J. Cell Biol., 1994, 63, 68-76 Google Scholar

  • [77] Kiang J.G., Ding X.Z., McClain D.E., Thermotolerance attenuates heat-induced increases in [Ca2+]i and HSP-72 synthesis but not heatinduced intracellular acidification in human A-431 cells, J. Investig. Med., 1996, 44, 53-63 Google Scholar

  • [78] Obrenovitch T.P., Urenjak J., Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury?, J. Neurotrauma, 1997, 14, 677-698 CrossrefGoogle Scholar

  • [79] Artal-Sanz M., Tavernarakis N., Proteolytic mechanisms in necrotic cell death and neurodegeneration, FEBS Lett., 2005, 579, 3287-3296 Google Scholar

  • [80] Praticò D., Reiss P., Tang L.X., Sung S., Rokach J., McIntosh T.K., Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury, J. Neurochem., 2002, 80, 894- 898 CrossrefGoogle Scholar

  • [81] Wang H., Olivero W., Lanzino G., Elkins W., Rose J., Honings D., et al., Rapid and selective cerebral hypothermia achieved using a cooling helmet, J. Neurosurg., 2004, 100, 272-277 CrossrefGoogle Scholar

  • [82] Harris O.A., Muh C.R., Surles M.C., Pan Y., Rozycki G., Macleod J., et al., Discrete cerebral hypothermia in the management of traumatic brain injury: a randomized controlled trial, J. Neurosurg., 2009, 110, 1256-1264 CrossrefGoogle Scholar

  • [83] Wang H., Olivero W., Elkins W., Traumatic brain injury and hypothermia, J. Neurosurg., 2012, 116, 1159-1160 CrossrefGoogle Scholar

  • [84] Gowda N.K., Agrawal D., Bal C., Chandrashekar N., Tripati M., Bandopadhyaya G.P., et al., Technetium Tc-99m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study, Am. J. Neuroradiol., 2006, 27, 447-451 Google Scholar

  • [85] Maugans T.A., Farley C., Altaye M., Leach J., Cecil K.M., Pediatric sports-related concussion produces cerebral blood flow alterations, Pediatrics, 2012, 129, 28-37 CrossrefGoogle Scholar

  • [86] Wang H., Wang D., Lanzino G., Elkins W., Olivero W., Differential interhemispheric cooling and ICP compartmentalization in a patient with left ICA occlusion, Acta Neurochir., 2006, 148, 681-683, discussion 683 CrossrefGoogle Scholar

  • [87] Covaciu L., Weis J., Bengtsson C., Allers M., Lunderquist A., Ahlström H., et al., Brain temperature in volunteers subjected to intranasal cooling, Intensive Care Med., 2011, 37, 1277-1284 Google Scholar

  • [88] Connor N.P., Abbs J.H., Orofacial proprioception: analyses of cutaneous mechanoreceptor population properties using artificial neural networks, J. Commun. Disord., 1998, 31, 535-542, 553 CrossrefGoogle Scholar

  • [89] Kawakami T., Ishihara M., Mihara M., Distribution density of intraepidermal nerve fibers in normal human skin, J. Dermatol., 2001, 28, 63-70 CrossrefGoogle Scholar

  • [90] Diesel D.A., Tucker A., Robertshaw D., Cold-induced changes in breathing pattern as a strategy to reduce respiratory heat loss, J. Appl. Physiol., 1990, 69, 1946-1952 Google Scholar

  • [91] McMurtry I.F., Reeves J.T., Will D.H., Grover R.F., Hemodynamic and ventilatory effects of skin-cooling in cattle, Experientia, 1975, 31, 1303-1304 CrossrefGoogle Scholar

  • [92] Miyazawa T., Horiuchi M., Ichikawa D., Subudhi A.W., Sugawara J., Ogoh S., Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow, Front. Physiol., 2012, 3, 308 Google Scholar

  • [93] Ogoh S., Ainslie P.N., Cerebral blood flow during exercise: mechanisms of regulation, J. Appl. Physiol., 2009, 107, 1370-1380 CrossrefGoogle Scholar

  • [94] Secher N.H., Seifert T., Van Lieshout J.J., Cerebral blood flow and metabolism during exercise: implications for fatigue, J. Appl. Physiol., 2008, 104, 306-314 Google Scholar

  • [95] Low D., Purvis A., Reilly T., Cable N.T., The prolactin responses to active and passive heating in man, Exp. Physiol., 2005, 90, 909-917 Google Scholar

  • [96] Pitsiladis Y.P., Strachan A.T., Davidson I., Maughan R.J., Hyperprolactinaemia during prolonged exercise in the heat: evidence for a centrally mediated component of fatigue in trained cyclists, Exp. Physiol., 2002, 87, 215-226 Google Scholar

  • [97] Bridge M.W., Weller A.S., Rayson M., Jones D.A., Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function, Eur. J. Appl. Physiol., 2003, 89, 451-459 CrossrefGoogle Scholar

  • [98] Hori T., Harada Y., Responses of midbrain raphe neurons to local temperature, Pflugers Arch., 1976, 364, 205-207 Google Scholar

  • [99] Kmieciak-Kolada K., Felinska W., Stachura Z., Majchrzak H., Herman Z.S., Concentration of biogenic amines and their metabolites in different parts of brain after experimental cerebral concussion, Pol. J. Pharmacol. Pharm., 1987, 39, 47-53 Google Scholar

  • [100] McAllister T.W., Flashman L.A., McDonald B.C., Ferrell R.B., Tosteson T.D., Yanofsky N.N., et al., Dopaminergic challenge with bromocriptine one month after mild traumatic brain injury: altered working memory and BOLD response, J. Neuropsychiatry Clin. Neurosci., 2011, 23, 277- 286 CrossrefGoogle Scholar

  • [101] Wagner A.K., Chen X., Kline A.E., Li Y., Zafonte R.D., Dixon C.E., Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury, Exp. Neurol., 2005, 195, 475-483 Google Scholar

  • [102] Wagner A.K., Sokoloski J.E., Ren D., Chen X., Khan A.S., Zafonte R.D., et al., Controlled cortical impact injury affects dopaminergic transmission in the rat striatum, J. Neurochem., 2005, 95, 457-465 CrossrefGoogle Scholar

  • [103] McIntosh T.K., Neurochemical sequelae of traumatic brain injury: therapeutic implications, Cerebrovasc. Brain Metab. Rev., 1994, 6, 109-162 Google Scholar

  • [104] Shen H., Harvey B.K., Chiang Y.H., Pick C.G., Wang Y., Methamphetamine potentiates behavioral and electrochemical responses after mild traumatic brain injury in mice, Brain Res., 2011, 1368, 248-253 Google Scholar

  • [105] Frenette A.J., Kanji S., Rees L., Williamson D.R., Perreault M.M., Turgeon A.F., et al., Efficacy and safety of dopamine agonists in traumatic brain injury: a systematic review of randomized controlled trials, J. Neurotrauma, 2012, 29, 1-18 CrossrefGoogle Scholar

  • [106] Bales J.W., Kline A.E., Wagner A.K., Dixon C.E., Targeting dopamine in acute traumatic brain injury, Open Drug Discov. J., 2010, 2, 119-128 Google Scholar

  • [107] Markianos M., Seretis A., Kotsou A., Christopoulos M., CSF neurotransmitter metabolites in comatose head injury patients during changes in their clinical state, Acta Neurochir.,1996, 138, 57- 59 Google Scholar

  • [108] Ashman T.A., Cantor J.B., Gordon W.A., Spielman L., Flanagan S., Ginsberg A., et al., A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury, Arch. Phys. Med. Rehabil., 2009, 90, 733-740 CrossrefGoogle Scholar

  • [109] Brisson G.R., Boisvert P., Peronnet F., Quirion A., Senecal L., Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress, Eur. J. Appl. Physiol. Occup. Physiol., 1989, 58, 816-820 CrossrefGoogle Scholar

  • [110] Mundel T., Hooper P.L., Bunn S.J., Jones D.A., The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans, Exp. Physiol., 2006, 91, 1007- 1014 Google Scholar

  • [111] Mundel T., Bunn S.J., Hooper P.L., Jones D.A., The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response, Exp. Physiol., 2007, 92, 187-195 Google Scholar

  • [112] Wegmann M., Faude O., Poppendieck W., Hecksteden A., Fröhlich M., Meyer T., Pre-cooling and sports performance: a meta-analytical review, Sports Med., 2012, 42, 545-564 CrossrefGoogle Scholar

  • [113] Selkirk G.A., McLellan T.M., Wong J., Active versus passive cooling during work in warm environments while wearing firefighting protective clothing, J. Occup. Environ. Hyg., 2004, 1, 521-531 Google Scholar

  • [114] Butler P.J., Jones D.R., Physiology of diving of birds and mammals, Physiol. Rev., 1997, 77, 837-899 Google Scholar

  • [115] Tipton M.J., Kelleher P.C., Golden F.S., Supraventricular arrhythmias following breath-hold submersions in cold water, Undersea Hyperb. Med., 1994, 21, 305-313 Google Scholar

  • [116] Koehn J., Kollmar R., Cimpianu C.L., Kallmünzer B., Moeller S., Schwab S., et al., Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure, Stroke, 2012, 43, 2142-2148 CrossrefGoogle Scholar

  • [117] Khurana R.K., Watabiki S., Hebel J.R., Toro R., Nelson E., Cold face test in the assessment of trigeminal-brainstem-vagal function in humans, Ann. Neurol., 1980, 7, 144-149 Google Scholar

  • [118] Kawakami Y., Natelson B.H., DuBois A.R., Cardiovascular effects of face immersion and factors affecting diving reflex in man, J. Appl. Physiol., 1967, 23, 964-970 Google Scholar

  • [119] Collins M.W., Grindel S.H., Lovell M.R., Dede D.E., Moser D.J., Phalin B.R., et al., Relationship between concussion and neuropsychological performance in college football players, JAMA, 1999, 282, 964-970 Google Scholar

  • [120] Maddocks D., Saling M., Neuropsychological deficits following concussion, Brain Inj., 1996, 10, 99-103 Google Scholar

  • [121] Macciocchi S.N., Barth J.T., Alves W., Rimel R.W., Jane J.A., Neuropsychological functioning and recovery after mild head injury in collegiate athletes, Neurosurgery, 1996, 39, 510-514 Google Scholar

  • [122] Craig A.D., Chen K., Bandy D., Reiman E.M., Thermosensory activation of insular cortex, Nat. Neurosci., 2000, 3, 184-190 CrossrefGoogle Scholar

  • [123] Rolls E.T., Grabenhorst F., Parris B.A., Warm pleasant feelings in the brain, Neuroimage, 2008, 41, 1504-1513 CrossrefGoogle Scholar

  • [124] Guest S., Grabenhorst F., Essick G., Chen Y., Young M., McGlone F., et al., Human cortical representation of oral temperature, Physiol. Behav., 2007, 92, 975-984 CrossrefGoogle Scholar

  • [125] Chu Z., Wilde E.A., Hunter J.V., McCauley S.R., Bigler E.D., Troyanskaya M., et al., Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents, Am. J. Neuroradiol., 2010, 31, 340-346 CrossrefGoogle Scholar

  • [126] Mayer A.R., Ling J., Mannell M.V., Gasparovic C., Phillips J.P., Doezema D., et al., A prospective diffusion tensor imaging study in mild traumatic brain injury, Neurology, 2010, 74, 643-650 CrossrefGoogle Scholar

  • [127] Wilde E.A., Ramos M.A., Yallampalli R., Bigler E.D., McCauley S.R., Chu Z., et al., Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury, Dev. Neuropsychol., 2010, 35, 333-351 Google Scholar

  • [128] Henry L.C., Tremblay J., Tremblay S., Lee A., Brun C., Lepore N., et al., Acute and chronic changes in diffusivity measures after sports concussion, J. Neurotrauma, 2011, 28, 2049-2059 CrossrefGoogle Scholar

  • [129] Ducreux D., Huynh I., Fillard P., Renoux J., Petit-Lacour M.C., Marsot- Dupuch K., et al., Brain MR diffusion tensor imaging and fibre tracking to differentiate between two diffuse axonal injuries, Neuroradiology, 2005, 47, 604-608 CrossrefGoogle Scholar

  • [130] Ducreux D., Nasser G., Lacroix C., Adams D., Lasjaunias P., MR diffusion tensor imaging, fiber tracking, and single-voxel spectroscopy findings in an unusual MELAS case, Am. J. Neuroradiol., 2005, 26, 1840-1844 Google Scholar

  • [131] Lee J.W., Choi C.G., Chun M.H., Usefulness of diffusion tensor imaging for evaluation of motor function in patients with traumatic brain injury: three case studies, J. Head Trauma Rehabil., 2006, 21, 272-278 Google Scholar

  • [132] Le T.H., Mukherjee P., Henry R.G., Berman J.I., Ware M., Manley G.T., Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report, Neurosurgery, 2005, 56, 189 Google Scholar

  • [133] Song S.K., Sun S.W., Ramsbottom M.J., Chang C., Russell J., Cross A.H., Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water, Neuroimage, 2002, 17, 1429- 1436 CrossrefGoogle Scholar

About the article

Received: 2014-11-09

Accepted: 2014-11-29

Published Online: 2015-01-14


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0004.

Export Citation

©2015 Huan Wang et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Huan Wang, Miri Kim, Kieran P. Normoyle, and Daniel Llano
Frontiers in Neuroscience, 2016, Volume 9

Comments (0)

Please log in or register to comment.
Log in