Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Understanding early dementia: EEG, MRI, SPECT and memory evaluation

Davide Vito Moretti
  • Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Giovanni di Dio Fatebenefratelli, Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/tnsci-2015-0005

Abstract

Background: An increase in the EEG upper/low a power ratio has been associated with mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) and to the atrophy of temporoparietal brain areas. Subjects with a higher α3/α2 frequency power ratio showed lower brain perfusion than in the low α3/α2 group. The two groups show significantly different hippocampal volumes and correlation with q frequency activity. Methods: Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording, and high resolution 3D magnetic resonance imaging (MRI). Twenty-seven of them underwent EEG recording and perfusion single-photon emission computed tomography (SPECT) evaluation. The α3/α2 power ratio and cortical thickness were computed for each subject. The difference in cortical thickness between the groups was estimated. Results: In the higher upper/low a group, memory impairment was more pronounced in both the MRI group and the SPECT MCI groups. An increase in the production of q oscillations was associated with greater interhemisperic coupling between temporal areas. It also correlated with greater cortical atrophy and lower perfusional rate in the temporoparietal cortex. Conclusion: High EEG upper/low α power ratio was associated with cortical thinning and lower perfusion in temporoparietal areas. Moreover, both atrophy and lower perfusion rate significantly correlated with memory impairment in MCI subjects. Therefore, the increase in the EEG upper/low α frequency power ratio could be useful in identifying individuals at risk for progression to AD dementia in a clinical context.

Keywords: EEG; MRI; SPECT; Memory; Prodromal Alzheimer’s disease

References

  • [1] Dubois B., Feldman H.H., Jacova C., DeKosky S.T., Barberger-Gateau P., Cummings J., et al., Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol., 2007, 6, 734-746 CrossrefGoogle Scholar

  • [2] Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., et al., The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging - Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 270-279 CrossrefGoogle Scholar

  • [3] Hampel H., Bürger K., Teipel S.J., Bokde A.L., Zetterberg H., Blennow K., Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease, Alzheimers Dement., 2008, 4, 38-48 CrossrefGoogle Scholar

  • [4] Galluzzi S., Geroldi C., Amicucci G., Bocchio-Chiavetto L., Bonetti M., Bonvicini C., et al., Supporting evidence for using biomarkers in the diagnosis of MCI due to AD, J. Neurol., 2013, 260, 640-650 Google Scholar

  • [5] Frisoni G.B., Sabattoli F., Lee A.D., Dutton R.A., Toga A.W., Thompson P.M., In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-based study. Neuroimage, 2006, 32, 104-110 CrossrefGoogle Scholar

  • [6] Frisoni G.B., Pievani M., Testa C., Sabattoli F., Bresciani L., Bonetti M., et al., The topography of grey matter involvement in early and late onset Alzheimer’s disease, Brain, 2007, 130, 720-730 CrossrefGoogle Scholar

  • [7] Frisoni G.B., Ganzola R., Canu E., Rüb U., Pizzini F.B., Alessandrini F., et al., Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla, Brain, 2008, 131, 3266-3276 Google Scholar

  • [8] Frisoni G.B., Prestia A., Rasser P.E., Bonetti M., Thompson P.M., In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease, J. Neurol., 2009, 256, 916-924 Google Scholar

  • [9] Frisoni G.B., Alzheimer disease: biomarker trajectories across stages of Alzheimer disease, Nat. Rev. Neurol., 2012, 8, 299-300 CrossrefGoogle Scholar

  • [10] van Strien N.M., Cappaert N.L., Witter M.P., The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network, Nat. Rev. Neurosci., 2009, 10, 272-282 CrossrefGoogle Scholar

  • [11] Missonnier P., Herrmann F.R., Michon A., Fazio-Costa L., Gold G., Giannakopoulos P., Early disturbances of gamma band dynamics in mild cognitive impairment, J. Neural Transm., 2010, 117, 489-498 CrossrefGoogle Scholar

  • [12] Steriade M., Grouping of brain rhythms in corticothalamic systems, Neuroscience, 2006, 137, 1087-1106 Google Scholar

  • [13] Hogan M.J., Swanwick G.R.J., Kaiser J., Rowan M., Lawlor B., Memory-related EEG power and coherence reductions in mild Alzheimer’s disease, Int. J. Psychophysiol., 2003, 43, 147-163 CrossrefGoogle Scholar

  • [14] Lopes da Silva F.H., Vos J.E., Mooibroek J., van Rotterdam A., Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis, Electroencephalogr. Clin. Neurophysiol., 1980, 50, 449-456 CrossrefGoogle Scholar

  • [15] Ingber L., Nunez P.L., Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs, Math. Biosci., 2011, 229, 160-173 Google Scholar

  • [16] Nunez P.L., Generation of human EEG rhythms by a combination of long and short-range neocortical interactions, Brain Topogr., 1989, 1, 199-215 CrossrefGoogle Scholar

  • [17] Stam C.J., Montez T., Jones B.F., Rombouts S.A., van der Made Y., Pijnenburg Y.A., et al., Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease, Clin. Neurophysiol., 2005, 116, 708-715 CrossrefGoogle Scholar

  • [18] Moretti D.V., Miniussi C., Frisoni G.B., Geroldi C., Zanetti O., Binetti G., et al., Hippocampal atrophy and EEG markers in subjects with mild cognitive impairment, Clin. Neurophysiol., 2007,118, 2716-2729 CrossrefGoogle Scholar

  • [19] Moretti D.V., Pievani M., Fracassi C., Binetti G., Rosini S., Geroldi C., et al., Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy, J. Alzheimers Dis., 2009, 17, 349-357 Google Scholar

  • [20] Moretti D.V., Frisoni G.B., Pievani M., Rosini S., Geroldi C., Binetti G., et al., Cerebrovascular disease and hippocampal atrophy are differently linked to functional coupling of brain areas: an EEG coherence study in MCI subjects, J. Alzheimers Dis., 2008, 14, 285-299 Google Scholar

  • [21] Moretti D.V., Babiloni C., Binetti G., Cassetta E., Dal Forno G., Ferreri F., et al., Individual analysis of EEG frequency and band power in mild Alzheimer’s disease, Clin. Neurophysiol., 2004, 115, 299-308 CrossrefGoogle Scholar

  • [22] Moretti D.V., Miniussi C., Frisoni G., Zanetti O., Binetti G., Geroldi C., et al., Vascular damage and EEG markers in subjects with mild cognitive impairment, Clin. Neurophysiol., 2007, 118, 1866-1876 CrossrefGoogle Scholar

  • [23] Moretti D.V., Frisoni G.B., Pievani M., Fracassi C., Geroldi C., Calabria M., et al., Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment, J. Alzheimers Dis.,, 2008, 15, 357-372 Google Scholar

  • [24] Bakkour A., Morris J.C., Dickerson B.C., The cortical signature of prodromal AD: regional thinning predicts mild AD dementia, Neurology, 2009, 72, 1048-1055 CrossrefGoogle Scholar

  • [25] Klimesch W., Doppelmayr M., Hanslmayr S., Upper alpha ERD and absolute power: their meaning for memory performance, Prog. Brain Res., 2006, 159, 151-165 CrossrefGoogle Scholar

  • [26] Klimesch W., Sauseng P., Hanslmayr S., EEG alpha oscillations: the inhibition timing hypothesis, Brain Res. Rev., 2007, 53, 63-88 CrossrefGoogle Scholar

  • [27] Klimesch W., Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis, Brain Res., 2011, 1408, 52-71 Google Scholar

  • [28] Folstein M.F., Folstein S.E., McHugh P.R., “Mini-mental state”. A practical method for grading the cognitive state of patients for clinician, J. Psychiatr. Res., 1975, 12,189-198 CrossrefGoogle Scholar

  • [29] Hughes C.P., Berg L., Danziger W.L., Cohen L.A., Martin R.L., A new clinical rating scale for the staging of dementia, Br. J. Psychiatry, 1982, 140, 1225-1230 Google Scholar

  • [30] Rosen W.G., Terry R.D., Fuld P.A., Katzman R., Peck A., Pathological verification of ischemic score in differentiation of dementias, Ann. Neurol., 1980, 7, 486-488 CrossrefGoogle Scholar

  • [31] Lawton M.P., Brodie E.M., Assessment of older people: self-maintaining and instrumental activity of daily living, Gerontologist, 1969, 9, 179-186 CrossrefGoogle Scholar

  • [32] Petersen R.C., Doody R., Kurz A., Mohs R.C., Morris J.C., Rabins P.V., et al., Current concepts in mild cognitive impairment, Arch. Neurol., 2001, 58, 1985-1992 CrossrefGoogle Scholar

  • [33] Portet F., Ousset P.J., Visser P.J., Frisoni G.B., Nobili F., Scheltens P., et al., Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 714-718 CrossrefGoogle Scholar

  • [34] Lezak M., Howieson D., Loring D.W., Neuropsychological assessment, Fourth edition, Oxford University Press, Oxford, UK, 2004 Google Scholar

  • [35] Radloff L.S., The CES-D scale: a self-report depression scale for research in the general population, Appl. Psychol. Measure., 1977, 1, 385-401 CrossrefGoogle Scholar

  • [36] Kaplan A.Y., The problem of segmental description of human electroencephalogram, Hum. Physiol., 1999, 25, 107-114 Google Scholar

  • [37] Cohen B.A., Sances A.Jr., Stationarity of the human electroencephalogram, Med. Biol. Eng. Comput., 1977, 15, 513-518 CrossrefGoogle Scholar

  • [38] Kawabata N., Test of statistical stability of the electroencephalogram, Biol. Cybern., 1976, 22, 235-238 CrossrefGoogle Scholar

  • [39] McEwen J.A., Anderson G.B., Modeling the stationarity and gaussianity of spontaneous electroencephalographic activity, IEEE Trans. Biomed. Eng., 1975, 22, 361-369 CrossrefGoogle Scholar

  • [40] Kipiński L., König R., Sielużycki C., Kordecki W., Application of modern tests for stationarity to single-trial MEG data: transferring powerful statistical tools from econometrics to neuroscience, Biol. Cybern., 2011, 105, 183-195 CrossrefGoogle Scholar

  • [41] Moretti D.V., Fracassi C., Pievani M., Geroldi C., Binetti G., Zanetti O., et al., Increase of theta/gamma ratio is associated with memory impairment, Clin. Neurophysiol., 2009, 120, 295-303 CrossrefGoogle Scholar

  • [42] Moretti D.V., Pievani M., Fracassi C., Binetti G., Rosini S., Geroldi C., et al., Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy, J. Alzheimers Dis., 2009, 17, 349-357 Google Scholar

  • [43] Moretti D.V., Pievani M., Geroldi C., Binetti G., Zanetti O., Cotelli M., et al., Increasing of hippocampal atrophy and cerebrovascular damage is differently associated with functional cortical coupling in MCI patients, Alzheimer Dis. Assoc. Disord., 2009, 23, 323-332 44] Cabeza R., Hemispheric asymmetry reduction in older adults: the HAROLD model, Psychol. Aging, 2002, 17, 85-100 45] Balsters J.H., O’Connell R.G., Galli A., Nolan H., Greco E., Kilcullen S.M., et al., Changes in resting connectivity with age: a simultaneous electroencephalogram and functional magnetic resonance imaging investigation, Neurobiol. Aging, 2013, 34, 2194-2207 46] Watson P., Conroy A., Moran G., Duncan S., Retrospective study of sensitivity and specificity of EEG in the elderly compared with younger age groups, Epilepsy Behav., 2012, 25, 408-411 47] Tenke C.E., Kayser J., Miller L., Warner V., Wickramaratne P., Weissman M.M., et al., Neuronal generators of posterior EEG alpha reflect individual differences in prioritizing personal spirituality, Biol. Psychol., 2013, 94, 426-432 48] Grandy T.H., Werkle-Bergner M., Chicherio C., Schmiedek F., Lövdén M., Lindenberger U., Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults, Psychophysiology, 2013, 50, 570-582 Google Scholar

  • [49] Grandy T.H., Werkle-Bergner M., Chicherio C., Lövdén M., Schmiedek F., Lindenberger U., Individual alpha peak frequency is related to latent factors of general cognitive abilities, Neuroimage, 2013, 79, 10-18 CrossrefGoogle Scholar

  • [50] Bekhtereva V., Sander C., Forschack N., Olbrich S., Hegerl U., Müller M.M., Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex, Clin. Neurophysiol., 2014, 125, 98-107 CrossrefGoogle Scholar

  • [51] Ségonne F., Dale A.M., Busa E., Glessner M., Salat D., Hahn H.K., et al., A hybrid approach to the skull stripping problem in MRI, Neuroimage, 2004, 22, 1060-1075 CrossrefGoogle Scholar

  • [52] Fischl B., Dale A.M., Measuring the thickness of the human cerebral cortex using magnetic resonance images, Proc. Natl. Acad. Sci. USA, 2000, 97, 11044-11049 Google Scholar

  • [53] Han X., Jovicich J., Salat D., van der Kouwe A., Quinn B., Czanner S., et al., Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer, Neuroimage, 2006, 32, 180-194 CrossrefGoogle Scholar

  • [54] Gronenschild E.H., Habets P., Jacobs H.I., Mengelers R., Rozendaal N., van Os J., et al., The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements, PLoS One, 2012, 7, 238-234 Google Scholar

  • [55] DeCarli C., Fletcher E., Ramey V., Harvey D., Jagust W.J, Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden, Stroke, 2005, 36, 50-55 CrossrefGoogle Scholar

  • [56] Pennanen C., Testa C., Laasko M.P., Hallikainen M., Helkala E.L., Hanninen T., et al., A voxel based morphometry study on mild cognitive impairment, J. Neurol. Neurosurg. Psychiatry, 2005, 76, 11-14 CrossrefGoogle Scholar

  • [57] Markesbery W.R., Schmitt R.A, Kryscio R.J., Davis D., Smith C., Wekstein D. Neuropathologic substrate of mild cognitive impairment, Arch. Neurol., 2006, 63, 38-46 CrossrefGoogle Scholar

  • [58] McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R.Jr, Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263-269 CrossrefGoogle Scholar

  • [59] Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., et al., Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 280-292 CrossrefGoogle Scholar

  • [60] Caroli A., Testa C., Geroldi C., Nobili F., Guerra U.P., Bonetti M., et al., Brain perfusion correlates of medial temporal lobe atrophy and white matter hyperintensities in mild cognitive impairment, J. Neurol., 2007, 254, 1000-1008 Google Scholar

  • [61] Matsuda H., The role of neuroimaging in mild cognitive impairment, Neuropathology, 2007, 27, 570-577 CrossrefGoogle Scholar

  • [62] Petrella J.R., Wang L., Krishnan S., Slavin M.J., Prince S.E., Tran T.T., et al., Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging, Radiology, 2007, 245, 224-235 CrossrefGoogle Scholar

  • [63] Pihlajamaki M., Jauhiainen A.M., Soininen H., Structural and functional MRI in mild cognitive impairment, Curr. Alzheimer Res., 2009, 6, 179-185 CrossrefGoogle Scholar

  • [64] Dickerson B.C., Sperling R.A., Large-scale functional brain network abnormalities in Alzheimer’s disease: insights fromfunctional neuroimaging, Behav. Neurol., 2009, 21, 63-75 CrossrefGoogle Scholar

  • [65] Ryu S.Y., Kwon M.J., Lee S.B., Yang D.W., Kim T.W., Song I.U., et al., Measurement of precuneal and hippocampal volumes using magnetic resonance volumetry in Alzheimer’s disease, J. Clin. Neurol., 2010, 6, 196-203 CrossrefGoogle Scholar

  • [66] Sperling R.A., Dickerson B.C., Pihlajamaki M., Vannini P., LaViolette P.S., Vitolo O.V., et al., Functional alterations in memory networks in early Alzheimer’s disease, Neuromolecular Med., 2010, 12, 27-43 CrossrefGoogle Scholar

  • [67] de Haan W., Mott K., van Straaten E.C., Scheltens P., Stam C.J., Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease, PLoS Comput. Biol., 2012, 8, e1002582 CrossrefGoogle Scholar

  • [68] Pievani M., de Haan W., Wu T., Seeley W.W., Frisoni G.B., Functional network disruption in the degenerative dementias, Lancet Neurol., 2011, 10, 829-843 CrossrefGoogle Scholar

  • [69] Chatwal J.P., Sperling R.A., Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease, J. Alzheimers Dis., 2012, 31, S155-167 Google Scholar

  • [70] Jones D.T., Machulda M.M., Vemuri P., McDade E.M., Zeng G., Senjem M.L., et al., Age-related changes in the default mode network are more advanced in Alzheimer disease, Neurology, 2011, 77, 1524-1531 CrossrefGoogle Scholar

  • [71] Brier M.R., Thomas J.B., Snyder A.Z., Benzinger T.L., Zhang D., Raichle M.E., et al., Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression, J. Neurosci., 2012, 32, 8890-8899 CrossrefGoogle Scholar

  • [72] Palop J.J., Mucke L., Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin?, Neuromolecular Med., 2010, 12, 48-55 CrossrefGoogle Scholar

  • [73] Stam C.J., van der Made Y., Pijnenburg Y.A., Scheltens P., EEG synchronization in mild cognitive impairment and Alzheimer’s disease, Acta Neurol. Scand., 2003, 108, 90-96 CrossrefGoogle Scholar

  • [74] Bhattacharya B.S., Coyle D., Maguire L.P., Alpha and theta rhythm abnormality in Alzheimer’s disease: a study using a computational model, Adv. Exp. Med. Biol., 2011, 718, 57-73 Google Scholar

  • [75] Rossini P.M., Buscema M., Capriotti M., Grossi E., Rodriguez G., Del Percio C., et al., Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?, Clin. Neurophysiol., 2008, 119, 1534-1545 CrossrefGoogle Scholar

  • [76] Wu X., Li R., Fleisher A.S., Reiman E.M., Guan X., Zhang Y., et al., Altered default mode network connectivity in Alzheimer’s disease - a resting functional MRI and Bayesian network study, Hum. Brain Mapp., 2011, 32, 1868-1881 CrossrefGoogle Scholar

  • [77] Wonderlick J.S., Ziegler D.A., Hosseini-Varnamkhasti P., Locascio J.J., Bakkour A., van der Kouwe A., et al., Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging, Neuroimage, 2009, 44, 1324-1333 CrossrefGoogle Scholar

  • [78] Zhang S., Li C.S., Functional connectivity mapping of the human precuneus by resting state fMRI, Neuroimage, 2012, 59, 3548-3562 CrossrefGoogle Scholar

  • [79] Morbelli S., Drzezga A., Perneczky R., Frisoni G.B., Caroli A., van Berckel B.N., et al., Resting metabolic connectivity in prodromal Alzheimer’s disease. A European Alzheimer Disease Consortium (EADC) project, Neurobiol. Aging, 2012, 33, 2533-2550 CrossrefGoogle Scholar

  • [80] Ghaem O., Mellet E., Crivello F., Tzourio N., Mazoyer B., Berthoz A., et al., Mental navigation along memorized routes activates the hippocampus, precuneus, and insula, Neuroreport, 1997, 8, 739-744 CrossrefGoogle Scholar

  • [81] Leichnetz G.R., Connections of the medial posterior parietal cortex (area 7m) in the monkey, Anat. Rec., 2001, 263, 215-236 Google Scholar

  • [82] Cavanna A.E., Trimble M.R., The precuneus: a review of its functional anatomy and behavioural correlates, Brain, 2006, 129, 564-583 Google Scholar

  • [83] Wenderoth N., Debaere F., Sunaert S., Swinnen S.P., The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour, Eur. J.Neurosci., 2005, 22, 235-246 CrossrefGoogle Scholar

  • [84] Klimesch W., Schimke H., Doppelmayr M., Ripper B., Schwaiger J., Pfurtscheller G., Event-related desynchronization (ERD) and the Dm effect: does alpha desynchronization during encoding predict late recall performance?, Int. J. Psychophysiol., 1996, 24, 47-60 CrossrefGoogle Scholar

  • [85] Klimesch W., Doppelmayr M., Stadler W., Pöllhuber D., Sauseng P., Röhm D., Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity, Neurosci. Lett., 2001, 302, 49-52 Google Scholar

  • [86] Fries P., Reynolds J.H., Rorie A.E., Desimone R., Modulation of oscillatory neuronal synchronization by selective visual attention, Science, 2001, 291, 1560-1563 Google Scholar

  • [87] Kilner J.M., Mattout J., Henson R., Friston K.J., Hemodynamic correlates of EEG: a heuristic, Neuroimage, 2005, 28, 280-286 CrossrefGoogle Scholar

  • [88 Wyart V., Tallon-Baudry C., Neural dissociation between visual awareness and spatial attention, J. Neurosci., 2008, 28, 2667-2679 CrossrefGoogle Scholar

  • [89] Spitzer B., Hanslmayr S., Opitz B., Mecklinger A., Bäuml K.-H., Oscillatory correlates of retrieval-induced forgetting in recognition memory, J. Cogn. Neurosci., 2009, 21, 976-990 Google Scholar

  • [90] Staudigl T., Hanslmayr S., Bäuml K.-H., Theta oscillations reflect the dynamics of interference in episodic memory retrieval, J. Neurosci., 2010, 30, 11356-11362 CrossrefGoogle Scholar

  • [91] Hanslmayr S., Staudigl T., Aslan A., Bäuml K.-H., Theta oscillations predict the detrimental effects of memory retrieval, Cogn. Affect. Behav. Neurosci., 2010, 10, 329-338 CrossrefGoogle Scholar

  • [92] Hanslmayr S., Staudigl T., Fellner M.C., Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis, Front. Hum. Neurosci., 2012, 6, 74 Google Scholar

  • [93] Jensen O., Mazaheri A., Shaping functional architecture by oscillatory alpha activity: gating by inhibition, Front. Hum. Neurosci., 2010, 4, 186 Google Scholar

  • [94] Norman K.A., How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model, Hippocampus, 2010, 20, 1217-1227 CrossrefGoogle Scholar

  • [95] Schneidman E., Puchalla J.L., Segev R., Harris R.A., Bialek W., Berry M.J., Synergy from silence in a combinatorial neural code, J. Neurosci., 2011, 31, 15732-15741 CrossrefGoogle Scholar

  • [96] Kurimoto R., Ishii R., Canuet L., Ikezawa K., Iwase M., Azechi M., et al., Induced oscillatory responses during the Sternberg’s visual memory task in patients with Alzheimer’s disease and mild cognitive impairment, Neuroimage, 2012, 59, 4132-4140 CrossrefGoogle Scholar

  • [97] Goard M., Dan Y., Basal forebrain activation enhances cortical coding of natural scenes, Nat. Neurosci., 2009, 12, 1444-1449 CrossrefGoogle Scholar

  • [98] Chalk M., Herrero J.L., Gieselmann M.A., Delicato L.S., Gotthardt S., Thiele A., Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1, Neuron, 2010, 66, 114-125 Google Scholar

  • [99] Barlow H.B., The coding of sensory messages, In: Current problems in animal behaviour, Eds. Thorpe W.H., Zangwill O.L., Cambridge University Press, Cambridge, UK, 1961, 331-360 Google Scholar

  • [100] Bialek W., Rieke F., de Ruytervan Steveninck R.R., Warland D., Reading a neural code, Science, 1991, 252, 1854-1857 Google Scholar

  • [101] Hanslmayr S., Spitzer B., Bäuml K.-H., Brain oscillations dissociate between semantic and non semantic encoding of episodic memories, Cereb. Cortex, 2009, 19, 1631-1640 CrossrefGoogle Scholar

  • [102] Craik F.I.M., Levels of processing: past, present and future?, Memory, 2002, 10, 305-318 CrossrefGoogle Scholar

  • [103] Moretti D.V., Pievani M., Geroldi C., Binetti G., Zanetti O., Rossini P.M., et al., EEG markers discriminate among different subgroup of patients with mild cognitive impairment, Am. J. Alzheimers Dis. Other Demen., 2010, 25, 58-73 CrossrefGoogle Scholar

  • [104] Moretti D.V., Frisoni G.B., Fracassi C., Pievani M., Geroldi C., Binetti G., et al., MCI patients’ EEGs show group differences between those who progress and those who do not progress to AD, Neurobiol. Aging, 2011, 32, 563-571 CrossrefGoogle Scholar

  • [105] Moretti D.V., Frisoni G.B., Binetti G., Zanetti O., Anatomical substrate and scalp EEG markers are correlated in subjects with cognitive impairment and Alzheimer’s disease, Front. Psychiatry, 2011, 1, 152 Google Scholar

  • [106] Moretti D.V., Prestia A., Fracassi C., Geroldi C., Binetti G., Rossini P.M., et al., Volumetric differences in mapped hippocampal regions correlate with increase of high alpha rhythm in Alzheimer’s disease, Int. J. Alzheimers Dis., 2011, 208218 Google Scholar

  • [107] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment, Neuroimage, 2012, 60, 489-496 CrossrefGoogle Scholar

  • [108] Moretti D.V., Prestia A., Fracassi C., Binetti G., Zanetti O., Frisoni G.B., Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease, Int. J. Alzheimers Dis., 2012,253153 Google Scholar

  • [109] Moretti D.V., Zanetti O., Binetti G., Frisoni G.B., Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment, Int. J. Alzheimers Dis., 2012, 917537 Google Scholar

  • [110] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Analysis of grey matter in thalamus and basal ganglia based on EEG alpha3/alpha2 frequency ratio reveals specific changes in subjects with mild cognitive impairment, ASN Neuro, 2012, 4, e00103 Google Scholar

  • [111] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Relationship between EEG alpha3/alpha2 ratio and the nuclues accumbens in subjects with mild cognitive impairment, J. Neurol. Neurophysiol., 2013, 4, 149 Google Scholar

  • [112] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Theta/gamma frequency ratio is associated to grey matter changes in basal ganglia in subjects with mild cognitive impairment, J. Radiol. Diagn. Imaging, 2013, 1, 10-18 Google Scholar

  • [113] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Temporo-parietal brain network impairment is related to EEG alpha3/alpha2 power ratio in prodromal Alzheimer’s disease, J. Neurol. Neurophysiol., 2013, 4, 160 Google Scholar

  • [114] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., EEG upper/low alpha frequency power ratio relates to temporo-parietal brain atrophy and memory performances in mild cognitive impairment, Front. Aging Neurosci., 2013, 5, 63 Google Scholar

  • [115] Moretti D.V., Prestia A., Binetti G., Zanetti O., Frisoni G.B., Increase of theta frequency is associated with reduction in regional cerebral blood flow only in subjects with mild cognitive impairment with higher upper alpha/low alpha EEG frequency power ratio, Front. Behav. Neurosci., 2013, 7, 188 Google Scholar

  • [116] Moretti D.V., Prestia A., Binetti G., Zanetti O., Frisoni G.B., Correlation between regional cerebral blood flow and EEG upper/low alpha frequency power ratio in mild cognitive impairment, J. Radiol. Diagn. Imaging, 2013, 1, 49-59 Google Scholar

  • [117] Moretti D.V., Paternicò D., Binetti G., Zanetti O., Frisoni G.B., Electroencephalographic upper/low alpha frequency power ratio relates to cortex thinning in mild cognitive impairment, Neurodegener. Dis., 2014, 14, 18-30 CrossrefGoogle Scholar

About the article

Received: 2014-10-02

Accepted: 2014-12-01

Published Online: 2015-02-06


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0005.

Export Citation

©2015 Davide Vito Moretti. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in