Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Treatment of acute cerebral ischemia using animal models: a meta-analysis

Peng-Fei Wang
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Zhou
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huang Fang
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sen Lin
  • Department of Development and Regeneration Key Laboratory of Sichuan Province, Department of Histoembryology and Neurobiology, Chengdu Medical College, Chengdu, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan-Chun Wang
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong Liu
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Xia / Guy D. Eslick / Qing-Wu Yang
  • Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-11 | DOI: https://doi.org/10.1515/tnsci-2015-0006

Abstract

Background: There are numerous potential treatments assessed for acute cerebral ischemia using animal models. This study aimed to assess the effect of these treatments in terms of infarct size and neurobehavioral change. This meta-analysis was conducted to determine if any of these treatments provide a superior benefit so that they might be used on humans. Methods: A systematic search was conducted using several electronic databases for controlled animal studies using only nonsurgical interventions for acute cerebral ischemia. A random-effects model was used. Results: After an extensive literature search, 145 studies were included in the analysis. These studies included 1408 treated animals and 1362 control animals. Treatments that had the most significant effect on neurobehavioral scales included insulin, various antagonists, including N-methyl-Daspartate (NMDA) receptor antagonist ACEA1021, calmodulin antagonist DY-9760e, and α-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist YM872, and antiviral agents. Treatments providing the greatest effect on infarct size included statins, sphingosine-1-phosphate agonist (fingolimod), alcohol, angiotensin, and leukotrienes. Treatments offering the greatest reduction in brain water content included various agonists, including sphingosine-1-phosphate agonist fingolimod, statins, and peroxisome proliferator-activated receptor gamma (PPAR-γ). Treatment groups with more than one study all had high heterogeneity (I2 > 80%), however, using meta-regression we determined several sources of heterogeneity including sample size of the treatment and control groups, the occlusion time, but not the year when the study was conducted. Conclusions: Some treatments stand out when compared to others for acute cerebral ischemia in animals. Greater replication of treatment studies is required before any treatments are selected for future human trials.

Keywords: Acute cerebral ischemia; Animal studies; Brain water content; Infarct size; Meta-analysis; Neurobehavioral scales

References

  • [1] Rosamond W.D., Folsom A.R., Chambless L.E., Wang C.-H., McGovern P.G., Howard G., et al., Stroke incidence and survival among middle-aged adults: 9-year follow-up of the atherosclerosis risk in communities (ARIC) cohort, Stroke, 1999, 30, 736-743 CrossrefGoogle Scholar

  • [2] Feigin V.L., Lawes C.M.M., Bennett D.A., Anderson C.S., Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century, Lancet Neurol., 2003, 2, 43-53 CrossrefGoogle Scholar

  • [3] Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients, BMJ, 2002, 324, 71-86 Google Scholar

  • [4] Perel P., Roberts I., Sena E., Wheble P., Briscoe C., Sandercock P., et al., Comparison of treatment effects between animal experiments and clinical trials: systematic review, BMJ, 2007, 334, 197 Google Scholar

  • [5] Fisher M., Feuerstein G., Howells D.W., Hurn P.D., Kent T.A., Savitz S.I., et al., Update of the stroke therapy academic industry roundtable preclinical recommendations, Stroke, 2009, 40, 2244-2250 CrossrefGoogle Scholar

  • [6] Hossmann K.-A., The two pathophysiologies of focal brain ischemia: implications for translational stroke research, J. Cereb. Blood Flow Metab., 2012, 32, 1310-1316 Google Scholar

  • [7] Shah K., Abbruscato T., The role of blood-brain barrier transporters in pathophysiology and pharmacotherapy of stroke, Curr. Pharm. Des., 2013, 20, 1510-1522 Google Scholar

  • [8] Durukan A., Strbian D., Tatlisumak T., Rodent models of ischemic stroke: a useful tool for stroke drug development, Curr. Pharm. Des., 2008, 14, 359-370 CrossrefGoogle Scholar

  • [9] Durukan A., Tatlisumak T., Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia, Pharmacol. Biochem. Behav., 2007, 87, 179-197 CrossrefGoogle Scholar

  • [10] Shuaib A., Lees K.R., Lyden P., Grotta J., Davalos A., Davis S.M., et al., NXY-059 for the treatment of acute ischemic stroke, New Engl. J. Med., 2007, 357, 562-571 Google Scholar

  • [11] Brewer L., Horgan F., Hickey A., Williams D., Stroke rehabilitation: recent advances and future therapies, QJM, 2013, 106, 11-25 CrossrefGoogle Scholar

  • [12] Ovbiagele B., Goldstein L.B., Higashida R.T., Howard V.J., Johnston S.C., Khavjou O.A., et al., Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association, Stroke, 2013, 44, 2361-2375 CrossrefGoogle Scholar

  • [13] Fisher M., Vasilevko V., Cribbs D., Mixed cerebrovascular disease and the future of stroke prevention, Transl. Stroke Res., 2012, 3 (Suppl. 1), 39-51 CrossrefGoogle Scholar

  • [14] Frantzias J., Sena E.S., Macleod M.R., Salman R.A.-S., Treatment of intracerebral hemorrhage in animal models: meta-analysis, Ann.Neurol., 2011, 69, 389-399 CrossrefGoogle Scholar

  • [15] Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, Ann. Intern. Med., 2009, 151, 264-269, W64 Google Scholar

  • [16] DerSimonian R., Laird N., Meta-analysis in clinical trials, Control. Clin. Trials, 1986, 7, 177-188 CrossrefGoogle Scholar

  • [17] Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G., Measuring inconsistency in meta-analyses, BMJ, 2003, 327, 557-560 Google Scholar

  • [18] Egger M., Davey Smith G., Schneider M., Minder C., Bias in meta-analysis detected by a simple, graphical test, BMJ, 1997, 315, 629-634 Google Scholar

  • [19] Orwin R.G.,, A fail-safe N for effect size in meta-analysis, J. Educ. Stat., 1983, 8, 157-159 Google Scholar

  • [20] Aggarwal R., Medhi B., Pathak A., Dhawan V., Chakrabarti A., Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice, J. Pharm. Pharmacol., 2008, 60, 731-737 CrossrefGoogle Scholar

  • [21] Airavaara M., Shen H., Kuo C.-C., Peranen J., Saarma M., Hoffer B., et al., Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats, J. Comp. Neurol., 2009, 515, 116-124 Google Scholar

  • [22] Aronowski J., Strong R., Shirzadi A., Grotta J.C., Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience, Stroke, 2003, 34, 1246-1251 CrossrefGoogle Scholar

  • [23] Belayev L., Khoutorova L., Zhao W., Vigdorchik A., Belayev A., Busto R., et al., Neuroprotective effect of darbepoetin alfa, a novel recombinant erythropoietic protein, in focal cerebral ischemia in rats, Stroke, 2005, 36, 1065-1070 CrossrefGoogle Scholar

  • [24] Black K.L., Weidler D.J., Jallad N.S., Sodeman T.M., Abrams G.D., Delayed pentobarbital therapy of acute focal cerebral ischemia, Stroke, 1978, 9, 245-249 CrossrefGoogle Scholar

  • [25] Callaway J.K., Knight M.J., Watkins D.J., Beart P.M., Jarrott B., Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats, Stroke, 1999, 30, 2704-2712 Google Scholar

  • [26] Caso J.R., Moro M.A., Lorenzo P., Lizasoain I., Leza J.C., Involvement of IL-1 beta in acute stress-induced worsening of cerebral ischaemia in rats, Eur. Neuropsychopharmacol., 2007, 17, 600-607 CrossrefGoogle Scholar

  • [27] Chabrier P.E., Auguet M., Spinnewyn B., Auvin S., Cornet S., Demerle-Pallardy C., et al., BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy, Proc. Natl. Acad. Sci. USA, 1999, 96, 10824-10829 CrossrefGoogle Scholar

  • [28] Chao X.D., Zhou J., Chen T., Liu W.B., Dong W.P., Qu Y., et al., Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats, Brain Res., 2010, 1363, 206-211 Google Scholar

  • [29] Chen Z., Che J., Hou Y., Cheng Y., Lin P.T., The extract of inflamed rabbit skin induced by inoculation of vaccinia virus possesses antioxidant and neuroprotective effects in acute ischemic stroke, J. Stroke Cerebrovasc. Dis., 2009, 18, 475-481 CrossrefGoogle Scholar

  • [30] Cho J., Lee H.-K., Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion, Biol. Pharm. Bull., 2004, 27, 1561-1564 CrossrefGoogle Scholar

  • [31] Clark D.L., Penner M., Orellana-Jordan I.M., Colbourne F., Comparison of 12, 24 and 48 h of systemic hypothermia on outcome after permanent focal ischemia in rat, Exp. Neurol., 2008, 212, 386-392 Google Scholar

  • [32] Cui L.L., Zhang X.J., Yang R., Wang L.N., Liu L.L., Li M., et al., Neuroprotection of early and short-time applying atorvastatin in the acute phase of cerebral ischemia: down-regulated 12/15-LOX, p38MAPK and cPLA2 expression, ameliorated BBB permeability, Brain Res., 2010, 1325, 164-173 Google Scholar

  • [33] Dhote V., Balaraman R., Effect of trimetazicline on acute cerebral ischemia/reperfusion injury induced by middle cerebral artery occlusion in rat forebrain, Indian J. Pharmacol., 2007, 39, 62 Google Scholar

  • [34] Elewa H.F., Kozak A., El-Remessy A.B., Frye R.F., Johnson M.H., Ergul A., et al., Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats, J. Pharmacol. Exp. Ther., 2009, 330, 532-540 Google Scholar

  • [35] Esneault E., Castagne V., Moser P., Bonny C., Bernalidin M., D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats, Neuroscience, 2008, 152, 308-320 CrossrefGoogle Scholar

  • [36] Fang S.Y., Tseng C.C., Yang Y.L., Lee E.J., Chen H.Y., Bhardwaj A., et al., Nitric oxide scavenger carboxy-PTIO reduces infarct volume following permanent focal ischemia, Acta Anaesthesiol. Taiwan., 2006, 44, 141-146 Google Scholar

  • [37] Faure S., Chapot R., Tallet D., Javellaud J., Achard J.M., Oudart N., Cerebroprotective effect of angiotensin IV in experimental ischemic stroke in the rat mediated by AT(4) receptors, J. Physiol. Pharmacol., 2006, 57, 329-342 Google Scholar

  • [38] Faure S., Oudart N., Javellaud J., Fournier A., Warnock D.G., Achard J.M., Synergistic protective effects of erythropoietin and olmesartan on ischemic stroke survival and post-stroke memory dysfunctions in the gerbil, J. Hypertens., 2006, 24, 2255-2261 CrossrefGoogle Scholar

  • [39] Gao M., Liu R., Zhu S.Y., Du G.H., Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats, J. Asian Nat. Prod. Res., 2008, 10, 551-558 CrossrefGoogle Scholar

  • [40] Garcia-Bonilla L., Sosti V., Campos M., Penalba A., Boada C., Sumalla M., et al., Effects of acute post-treatment with dipyridamole in a rat model of focal cerebral ischemia, Brain Res., 2011, 1373, 211-220 Google Scholar

  • [41] Goericke S.L., Engelhorn T., Forsting M., Speck U., Maderwald S., Ladd M.E., et al., Intrathecal corticoids in permanent focal cerebral ischemia in rats. Part I: a new therapeutic approach in the acute phase, J. Cereb. Blood Flow Metab., 2010, 30, 801-807 Google Scholar

  • [42] Guan W., Kozak A., El-Remessy A.B., Johnson M.H., Pillai B.A., Fagan S.C., Acute treatment with candesartan reduces early injury after permanent middle cerebral artery ccclusion, Transl. Stroke Res., 2011, 2, 179-185 CrossrefGoogle Scholar

  • [43] Harukuni I., Bhardwaj A., Shaivitz A.B., DeVries A.C., London E.D., Hurn P.D., et al., s1-receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine affords neuroprotection from focal ischemia with prolonged reperfusion, Stroke, 2000, 31, 976-982 CrossrefGoogle Scholar

  • [44] He Z., Ibayashi S., Nagao T., Fujii K., Sadoshima S., Fujishima M., L-arginine ameliorates cerebral blood flow and metabolism and decreases infarct volume in rats with cerebral ischemia, Brain Res., 1995, 699, 208-213 Google Scholar

  • [45] Hoang S., Liauw J., Choi M., Guzman R.G., Steinberg G.K., Netrin-4 enhances angiogenesis and neurologic outcome after cerebral ischemia, J. Cereb. Blood Flow Metab., 2009, 29, 385-397 Google Scholar

  • [46] Horsburgh K., McCulloch J., Nilsen M., McCracken E., Large C., Roses A.D., et al., Intraventricular infusion of apolipoprotein E ameliorates acute neuronal damage after global cerebral ischemia in mice, J. Cereb. Blood Flow Metab., 2000, 20, 458-462 Google Scholar

  • [47] Hosomi N., Ban C.R., Naya T., Takahashi T., Guo P., Song X.Y., et al., Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia, J. Cereb. Blood Flow Metab., 2005, 25, 959-967 Google Scholar

  • [48] Hosomi N., Nishiyama A., Ban C.R., Naya T., Takahashi T., Kohno M., et al., Angiotensin type 1 receptor blockage improves ischemic injury following transient focal cerebral ischemia, Neuroscience, 2005, 134, 225-231 Google Scholar

  • [49] Huh P.W., Belayev L., Zhao W., Koch S., Busto R., Ginsberg M.D., Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia, J. Neurosurg., 2000, 92, 91-99 CrossrefGoogle Scholar

  • [50] Jiang N., Kowaluk E.A., Lee C.-H., Mazdiyasni H., Chopp M., Adenosine kinase inhibition protects brain against transient focal ischemia in rats, Eur. J. Pharmacol., 1997, 320, 131-137 Google Scholar

  • [51] Kashiwagi F., Katayama Y., Shimizu J., Kamiya T., Terashi A., Effect of a new hyperosmotic agent, NIK-242 injection, on brain water content, metabolites and cerebral blood flow in cerebral ischemia in the spontaneously hypertensive rat, Jpn. Circ. J., 1991, 55, 1246-1251 CrossrefGoogle Scholar

  • [52] Kawai H., Yuki S., Sugimoto J., Tamao Y., Effects of a thrombin inhibitor, argatroban, on ischemic brain damage in the rat distal middle cerebral artery occlusion model, J. Pharmacol. Exp. Ther., 1996, 278, 780-785 Google Scholar

  • [53] Kawamura S., Yasui N., Shirasawa M., Fukasawa H., Therapeutic effects of hyperbaric oxygenation on acute focal cerebral ischemia in rats, Surg. Neurol., 1990, 34, 101-106 CrossrefGoogle Scholar

  • [54] Kawamura S., Yasui N., Shirasawa M., Fukasawa H., Effects of a Ca2+ entry blocker (nilvadipine) on acute focal cerebral ischemia in rats, Exp. Brain Res., 1991, 83, 434-438 Google Scholar

  • [55] Khan M.M., Ishrat T., Ahmad A., Hoda M.N., Khan M.B., Khuwaja G., et al., Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats, Chem. Biol. Interact., 2010, 183, 255-263 Google Scholar

  • [56] Kim H.J., Rowe M., Ren M., Hong J.-S., Chen P.-S., Chuang D.-M., Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action, J. Pharmacol. Exp. Ther., 2007, 321, 892-901 Google Scholar

  • [57] Kim S.H., Kim E.H., Lee B.I., Heo J.H., Chronic cerebral hypoperfusion protects against acute focal ischemia, improves motor function, and results in vascular remodeling, Curr. Neurovasc. Res., 2008, 5, 28-36 Google Scholar

  • [58] Kobayashi H., Ide H., Kabuto M., Handa Y., Kubota T., Ishii Y., Effect of mannitol on focal cerebral ischemia evaluated by somatosensory-evoked potentials and magnetic resonance imaging, Surg. Neurol., 1995, 44, 55-61 CrossrefGoogle Scholar

  • [59] Koumura A., Nonaka Y., Hyakkoku K., Oka T., Shimazawa M., Hozumi I., et al., A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice, Neuroscience, 2008, 157, 309-318 Google Scholar

  • [60] Kozak A., Ergul A., El-Remessy A.B., Johnson M.H., Machado L.S., Elewa H.F., et al., Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke, Stroke, 2009, 40, 1870-1876 CrossrefGoogle Scholar

  • [61] Krishnamurthy R.G., Senut M.-C., Zemke D., Min J., Frenkel M.B., Greenberg E.J., et al., Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia, J. Neurosci. Res., 2009, 87, 2541-2550 CrossrefGoogle Scholar

  • [62] Lam B.Y.H., Lo A.C.Y., Sun X., Luo H.W., Chung S.K., Sucher N.J., Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice, Phytomedicine, 2003, 10, 286-291 CrossrefGoogle Scholar

  • [63] Leach M.J., Swan J.H., Eisenthal D., Dopson M., Nobbs M., BW619C89, a glutamate release inhibitor, protects against focal cerebral ischemic damage, Stroke, 1993, 24, 1063-1067 Google Scholar

  • [64] Lee E., Chen H.-Y., Lee M.-Y., Chen T.-Y., Hsu Y.-S., Hu Y.-L., et al., Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice, Free Radic. Biol. Med., 2005, 39, 495-510 Google Scholar

  • [65] Lee E.J., Chen H.Y., Wu T.S., Chen T.Y., Ayoub I.A., Maynard K.I., Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats, J. Neurosci. Res., 2002, 68, 636-645 Google Scholar

  • [66] Lee E.J., Lee M.-Y., Chen H.-Y., Hsu Y.-S., Wu T.-S., Chen S.-T., et al., Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia, J. Pineal Res., 2005, 38, 42-52 CrossrefGoogle Scholar

  • [67] Lee E.J., Wu T.-S., Chang G.-L., Li C.-Y., Chen T.-Y., Lee M.-Y., et al., Delayed treatment with nicotinamide inhibits brain energy depletion, improves cerebral microperfusion, reduces brain infarct volume, but does not alter neurobehavioral outcome following permanent focal cerebral ischemia in Sprague Dawley rats, Curr. Neurovasc. Res., 2006, 3, 203-213 CrossrefGoogle Scholar

  • [68] Lee E.J., Wu T.-S., Lee M.-Y., Chen T.-Y., Tsai Y.-Y., Chuang J.-I., et al., Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats, J. Pineal Res., 2004, 36, 33-42 CrossrefGoogle Scholar

  • [69] Lee K., Jo I.Y., Park S.H., Kim K.S., Bae J., Park J.W., et al., Defatted sesame seed extract reduces brain oedema by regulating aquaporin 4 expression in acute phase of transient focal cerebral ischaemia in rat, Phytother. Res., 2012, 26, 1521-1527 Google Scholar

  • [70] Lee M.-Y., Kuan Y.-H., Chen H.-Y., Chen T.-Y., Chen S.-T., Huang C.-C., et al., Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats, J. Pineal Res., 2007, 42, 297-309 CrossrefGoogle Scholar

  • [71] Lee S.-T., Chu K., Jung K.-H., Ko S.-Y., Kim E.-H., Sinn D.I., et al., Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia, Brain Res., 2005, 1058, 120-128 Google Scholar

  • [72] Lei B., Popp S., Cottrell J.E., Kass I.S., Effects of midazolam on brain injury after transient focal cerebral ischemia in rats, J. Neurosurg. Anesthesiol., 2009, 21, 131-139 CrossrefGoogle Scholar

  • [73] Lemay D.R., Gehua L., Zelenock G.B., D’Alecy L.G., Insulin administration protects neurologic function in cerebral ischemia in rats, Stroke, 1988, 19, 1411-1419 CrossrefGoogle Scholar

  • [74] Ley J.J., Belayev L., Saul I., Becker D.A., Ginsberg M.D., Neuroprotective effect of STAZN, a novel azulenyl nitrone antioxidant, in focal cerebral ischemia in rats: dose-response and therapeutic window, Brain Res., 2007, 1180, 101-110 Google Scholar

  • [75] Li J., Luan X., Lai Q., Clark J.C., McAllister J.P., II, Fessler R., et al., Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis, Neurol. Res., 2004, 26, 677-683 CrossrefGoogle Scholar

  • [76] Lin S.-Z., Hoffer B.J., Kaplan P., Wang Y., Osteogenic protein-1 protects against cerebral infarction induced by MCA ligation in adult rats, Stroke, 1999, 30, 126-133 Google Scholar

  • [77] Little J.R., Latchaw J.P., Slugg R.M., Lesser R.P., Stowe N.T., Treatment of acute focal cerebral ischemia with propranolol, Stroke, 1982, 13, 302-307 CrossrefGoogle Scholar

  • [78] Liu X.F., Fawcett J.R., Thorne R.G., DeFor T.A., Frey I.W.H., Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage, J. Neurol. Sci., 2001, 187, 91-97 Google Scholar

  • [79] Lou M., Eschenfelder C.C., Herdegen T., Brecht S., Deuschl G., Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats, Stroke, 2004, 35, 578-583 CrossrefGoogle Scholar

  • [80] Lu A., Ran R., Parmentier-Batteur S., Nee A., Sharp F.R., Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia, J. Neurochem., 2002, 81, 355-364 Google Scholar

  • [81] Ma S.W., Yin H.F., Chen L.Y., Liu H.X., Zhao M., Zhang X.T., Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats, J. Nat. Med., 2012, 66, 25-31 CrossrefGoogle Scholar

  • [82] Maheshwari A., Badgujar L., Phukan B., Bodhankar S.L., Thakurdesai P., Protective effect of etoricoxib against middle cerebral artery occlusion induced transient focal cerebral ischemia in rats, Eur. J. Pharmacol., 2011, 667, 230-237 Google Scholar

  • [83] Mao X., Yin W., Liu M., Ye M., Liu P., Liu J., et al., Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats, Brain Res., 2011, 1385, 275-280 Google Scholar

  • [84] Medhi B., Aggarwal R., Chakrabarti A., Neuroprotective effect of pioglitazone on acute phase changes induced by partial global cerebral ischemia in mice, Indian J. Exp. Biol., 2010, 48, 793-799 Google Scholar

  • [85] Merlo Pich E., Grimaldi R., Zoli M., Biagini G., Solfrini V., Toffano G., et al., Siagoside selectively attenuates morphological and functional striatal impairments induced by transient forebrain ischemia in rats, Stroke, 1992, 23, 234-241 CrossrefGoogle Scholar

  • [86] Mishra V., Verma R., Raghubir R., Neuroprotective effect of flurbiprofen in focal cerebral ischemia: the possible role of ASIC1a, Neuropharmacology, 2010, 59, 582-588 Google Scholar

  • [87] Mohammadi M.T., Shid-Moosavi S.M., Dehghani G.A., Contribution of nitric oxide synthase (NOS) in blood-brain barrier disruption during acute focal cerebral ischemia in normal rat, Pathophysiology, 2012, 19, 13-20 CrossrefGoogle Scholar

  • [88] Moyanova S.G., Kortenska L.V., Mitreva R.G., Pashova V.D., Ngomba R.T., Nicoletti F., Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia, Brain Res., 2007, 1153, 58-67 Google Scholar

  • [89] Nagaraja T.N., Knight R.A., Croxen R.L., Konda K.P., Fenstermacher J.D., Acute neurovascular unit protection by simvastatin in transient cerebral ischemia, Neurol. Res., 2006, 28, 826-830 CrossrefGoogle Scholar

  • [90] Nagel S., Su Y., Horstmann S., Heiland S., Gardner H., Koziol J., et al., Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase, Brain Res., 2008, 1188, 198-206 Google Scholar

  • [91] Park C.K., Rudolphi K.A., Antiischemic effects of propentofylline (HWA 285) against focal cerebral infarction in rats, Neurosci. Lett., 1994, 178, 235-238 Google Scholar

  • [92] Patzer A., Zhao Y., Stock I., Gohlke P., Herdegen T., Culman J., Peroxisome proliferator-activated receptors gamma (PPAR gamma) differently modulate the interleukin-6 expression in the peri-infarct cortical tissue in the acute and delayed phases of cerebral ischaemia, Eur. J. Neurosci., 2008, 28, 1786-1794 CrossrefGoogle Scholar

  • [93] Peerless S.J., Ishikawa R., Hunter I.G., Peerless M.J., Protective effect of Fluosol-DA in acute cerebral ischemia, Stroke, 1981, 12, 558-563 CrossrefGoogle Scholar

  • [94] Peng H.-Y., Du J.-R., Zhang G.-Y., Kuang X., Liu Y.-X., Qian Z.-M., et al., Neuroprotective effect of Z-Ligustilide against permanent focal ischemic damage in rats, Biol. Pharm. Bull., 2007, 30, 309-312 CrossrefGoogle Scholar

  • [95] Rahman R.M.A., Nair S.M., Helps S.C., Shaw O.M., Sims N.R., Rosengren R.J., et al., (-)-Epigallocatechin gallate as an intervention for the acute treatment of cerebral ischemia, Neurosci. Lett., 2005, 382, 227-230 Google Scholar

  • [96] Ritz M.F., Schmidt P., Mendelowitsch A., Acute effects of 17 beta-estradiol on the extracellular concentration of excitatory amino acids and energy metabolites during transient cerebral ischemia in male rats, Brain Res., 2004, 1022, 157-163 Google Scholar

  • [97] Roos J.A., Jackson-Friedman C., Lyden P., Effects of hyperbaric oxygen on neurologic outcome for cerebral ischemia in rats, Acad. Emerg. Med., 1998, 5, 18-24 CrossrefGoogle Scholar

  • [98] Sarhan S., Wettstein J.G., Maynard K.I., Delayed treatment with 5-nitro-6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione, a glycine site N-methyl-D-aspartate antagonist, protects against permanent middle cerebral artery occlusion in male rats, Neurosci. Lett., 2003, 347, 147-150 Google Scholar

  • [99] Sato T., Morishima Y., Shirasaki Y., 3-Google Scholar

  • [2-Google Scholar

  • [4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a novel calmodulin antagonist, reduces brain edema through the inhibition of enhanced blood-brain barrier permeability after transient focal ischemia, J. Pharmacol. Exp. Ther., 2003, 304, 1042-1047 Google Scholar

  • [100] Seren M.S., Lazzaro A., Yang C.L., Canella R., Bassan M., Zanoni R., et al., Orally administered glycolipid derivative LIGA20 reduces infarct volume and behavioral impairment after focal cerebral ischemia, J. Pharmacol. Exp. Ther., 1994, 268, 460-465 Google Scholar

  • [101] Sheng R., Zhang L.S., Han R., Gao B., Liu Q.X., Qin Z.H., Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia, Acta Pharmacol. Sin., 2011, 32, 303-310 Google Scholar

  • [102] Shi Q.J., Xiao L., Zhao B., Zhang X.Y., Wang X.R., Xu D.M., et al., Intracerebroventricular injection of HAMI 3379, a selective cysteinyl leukotriene receptor 2 antagonist, protects against acute brain injury after focal cerebral ischemia in rats, Brain Res., 2012, 1484, 57-67 Google Scholar

  • [103] Shirakura S., Sano J.I., Karasawa A., Kubo K., Protective effects of benidipine on arachidonic acid-induced acute cerebral ischemia in rats, Jpn. J. Pharmacol., 1992, 59, 15-22 Google Scholar

  • [104] Shuaib A., Yang Y., Nakada M.T., Li Q., Yang T., Glycoprotein IIb/IIIa antagonist, murine 7E3 F(ab’)2, and tissue plasminogen activator in focal ischemia: evaluation of efficacy and risk of hemorrhage with combination therapy, J. Cereb. Blood Flow Metab., 2002, 22, 215-222 Google Scholar

  • [105] Shuaib A., Yang Y., Siddiqui M.M., Kalra J., Intraarterial urokinase produces significant attenuation of infarction volume in an embolic focal ischemia model, Exp. Neurol., 1998, 154, 330-335 Google Scholar

  • [106] Shukla P.K., Khanna V.K., Ali M.M., Khan M.Y., Srimal R.C., Anti-ischemic effect of curcumin in rat brain, Neurochem. Res., 2008, 33, 1036-1043 CrossrefGoogle Scholar

  • [107] Shyu W.-C., Lin S.-Z., Chiang M.-F., Yang H.-I., Thajeb P., Li H., Neuregulin-1 reduces ischemia-induced brain damage in rats, Neurobiol. Aging, 2004, 25, 935-944 CrossrefGoogle Scholar

  • [108] Smith A.L., Hoff J.T., Nielsen S.L., Larson C.P., Barbiturate protection in acute focal cerebral ischemia, Stroke, 1974, 5, 1-7 CrossrefGoogle Scholar

  • [109] Takahashi M., Ni J.W., Kawasaki-Yatsugi S., Toya T., Ichiki C., Yatsugi S.-I., et al., Neuroprotective efficacy of YM872, an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, after permanent middle cerebral artery occlusion in rats, J. Pharmacol. Exp. Ther., 1998, 287, 559-566 Google Scholar

  • [110] Tamura M., Aoki Y., Seto T., Itoh Y., Ukai Y., Cerebroprotective action of a Na+/Ca2+ channel blocker NS-7: II. Effect on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of permanent middle cerebral artery occlusion in rats, Brain Res., 2001, 890, 170-176 Google Scholar

  • [111] Tanaka K., Ito D., Suzuki S., Dembo T., Kosakai A., Fukuuchi Y., A novel voltage-sensitive Na+ and Ca2+ channel blocker, NS-7, prevents suppression of cyclic AMP-dependent protein kinase and reduces infarct area in the acute phase of cerebral ischemia in rat, Brain Res., 2002, 924, 98-108 Google Scholar

  • [112] Thoene-Reineke C., Rumschussel K., Schmerbach K., Krikov M., Wengenmayer C., Godes M., et al., Prevention and intervention studies with telmisartan, ramipril and their combination in different rat stroke models, PLoS One, 2011, 6, e23646 Google Scholar

  • [113] Tian J., Fu F., Geng M., Jiang Y., Yang J., Jiang W., et al., Neuroprotective effect of 20(S)-ginseno side Rg(3) on cerebral ischemia in rats, Neurosci. Lett., 2005, 374, 92-97 Google Scholar

  • [114] Tian J., Fu F., Li G., Gao Y., Zhang Y., Meng Q., et al., Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats, Phytomedicine, 2009, 16, 726-733 CrossrefGoogle Scholar

  • [115] Traystman R.J., Klaus J.A., DeVries A.C., Shaivitz A.B., Hurn P.D., Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes, Stroke, 2001, 32, 783-787 CrossrefGoogle Scholar

  • [116] Tzen J.T.C., Jinn T.R., Chen Y.C., Li F.Y., Cheng F.C., Shi L.S., et al., Magnesium lithospermate B possesses inhibitory activity on Na+, K+-ATPase and neuroprotective effects against ischemic stroke, Acta Pharmacol. Sin., 2007, 28, 609-615 CrossrefGoogle Scholar

  • [117] Uchida M., Palmateer J.M., Herson P.S., Devries A.C., Cheng J., Hurn P.D., Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice, J. Cereb. Blood Flow Metab., 2009, 29, 1454-1462 Google Scholar

  • [118] Veltkamp R., Warner D.S., Domoki F., Brinkhous A.D., Toole J.F., Busija D.W., Hyperbaric oxygen decreases infarct size and behavioral deficit after transient focal cerebral ischemia in rats, Brain Res., 2000, 853, 68-73 Google Scholar

  • [119] Verma R., Mishra V., Gupta K., Sasmal D., Raghubir R., Neuroprotection by rosiglitazone in transient focal cerebral ischemia might not be mediated by glutamate transporter-1, J. Neurosci. Res., 2011, 89, 1849-1858 CrossrefGoogle Scholar

  • [120] VonLubitz D., Lin R.C.S., Jacobson K.A., Cerebral ischemia in gerbils: Effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist, Eur. J. Pharmacol., 1995, 287, 295-302 Google Scholar

  • [121] Wahl F., Allix M., Plotkine M., Boulu R.G., Effect of riluzole on focal cerebral ischemia in rats, Eur. J. Pharmacol., 1993, 230, 209-214 CrossrefGoogle Scholar

  • [122] Wakabayashi K., Nagai A., Sheikh A.M., Shiota Y., Narantuya D., Watanabe T., et al., Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model, J. Neurosci. Res., 2010, 88, 1017-1025 Google Scholar

  • [123] Wang F., Wang Y., Geng X.K., Asmaro K., Peng C.Y., Sullivan J.M., et al., Neuroprotective effect of acute ethanol administration in a rat with transient cerebral ischemia, Stroke, 2012, 43, 205-210 CrossrefGoogle Scholar

  • [124] Wang J., Yang X., Camporesi C.V., Yang Z., Bosco G., Chen C., et al., Propofol reduces infarct size and striatal dopamine accumulation following transient middle cerebral artery occlusion: a microdialysis study, Eur. J. Pharmacol., 2002, 452, 303-308 Google Scholar

  • [125] Wang J.P., Yang Z.T., Liu C., He Y.H., Zhao S.S., L-carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia, Brain Res., 2013, 1507, 125-133 CrossrefGoogle Scholar

  • [126] Wang Q., van Hoecke M., Tang X.N., Lee H., Zheng Z., Swanson R.A., et al., Pyruvate protects against experimental stroke via an anti-inflammatory mechanism, Neurobiol. Dis., 2009, 36, 223-231 CrossrefGoogle Scholar

  • [127] Wang T., Fu F.H., Han B., Zhu M., Yu X., Zhang L.M., Aspirin attenuates cerebral ischemic injury in diabetic rats, Exp. Clin. Endocrinol. Diabetes, 2009, 117, 181-185 CrossrefGoogle Scholar

  • [128] Wang W., Xu J., Li L., Wang P., Ji X., Ai H., et al., Neuroprotective effect of morroniside on focal cerebral ischemia in rats, Brain Res. Bull., 2010, 83, 196-201 CrossrefGoogle Scholar

  • [129] Wang X., Xu L., Wang H., Grzanna R., Zhan Y., Knabb R.M., et al., Inhibition of factor Xa reduces ischemic brain damage after thromboembolic stroke in rats, Stroke, 2003, 34, 468-474 CrossrefGoogle Scholar

  • [130] Wang X.Y., Liu J.X., Zhu H.H., Tejima E., Tsuji K., Murata Y., et al., Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia, Stroke, 2008, 39, 1869-1874 CrossrefGoogle Scholar

  • [131] Wei Y., Yemisci M., Kim H.-H., Yung L.M., Shin H.K., Hwang S.-K., et al., Fingolimod provides long-term protection in rodent models of cerebral ischemia, Ann. Neurol., 2011, 69, 119-129 CrossrefGoogle Scholar

  • [132] Wiegler K., Bonny C., Coquoz D., Hirt L., The JNK inhibitor XG-102 protects from ischemic damage with delayed intravenous administration also in the presence of recombinant tissue plasminogen activator, Cerebrovasc. Dis., 2008, 26, 360-366 Google Scholar

  • [133] Willing A.E., Vendrame M., Mallery J., Cassady C.J., Davis C.D., Sanchez-Ramos J., et al., Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke, Cell Transpl., 2003, 12, 449-454 CrossrefGoogle Scholar

  • [134] Won S.J., Xie L., Kim S.H., Tang H., Wang Y., Mao X., et al., Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke, Brain Res., 2006, 1123, 237-244 Google Scholar

  • [135] Xi H.-j., Zhang T.-h., Tao T., Song C.-y., Lu S.-j., Cui X.-g., et al., Propofol improved neurobehavioral outcome of cerebral ischemia-reperfusion rats by regulating Bcl-2 and Bax expression, Brain Res., 2011, 1410, 24-32 Google Scholar

  • [136] Xing Y., Zhang X., Zhao K., Cui L., Wang L., Dong L., et al., Beneficial effects of sulindac in focal cerebral ischemia: a positive role in Wnt/β-catenin pathway, Brain Res., 2012, 1482, 71-80 Google Scholar

  • [137] Yang C., Zhang X., Fan H., Liu Y., Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia, Brain Res., 2009, 1282, 133-141 Google Scholar

  • [138] Yang J.P., Liu H.J., Liu X.F., VEGF promotes angiogenesis and functional recovery in stroke rats, J. Invest. Surg., 2010, 23, 149-155 CrossrefGoogle Scholar

  • [139] Yang J.-P., Liu H.-J., Wang Z.-L., Cheng S.-M., Cheng X., Xu G.-L., et al., The dose-effectiveness of intranasal VEGF in treatment of experimental stroke, Neurosci. Lett., 2009, 461, 212-216 Google Scholar

  • [140] Yang Y., Li Q., Nakada M.T., Yang T., Shuaib A., Angiographic evaluation of middle cerebral artery reperfusion caused by platelet glycoprotein IIb/IIIa receptor complex antagonist murine 7E3 F(ab’)2 in a model of focal cerebral ischemia in rats, J. Neurosurg., 2001, 94, 582-588 Google Scholar

  • [141] Yang Y., Li Q., Shuaib A., Neuroprotection by 2-h postischemia administration of two free radical scavengers, alpha-phenyl-n-tert-butyl-nitrone (PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), in rats subjected to focal embolic cerebral ischemia, Exp. Neurol., 2000, 163, 39-45 Google Scholar

  • [142] Yang Y., Li Q., Shuaib A., Enhanced neuroprotection and reduced hemorrhagic incidence in focal cerebral ischemia of rat by low dose combination therapy of urokinase and topiramate, Neuropharmacology, 2000, 39, 881-888 CrossrefGoogle Scholar

  • [143] Yang Y., Li Q., Wang C.-X., Jeerakathil T., Shuaib A., Dose-dependent neuroprotection with tiagabine in a focal cerebral ischemia model in rat, Neuroreport, 2000, 11, 2307-2311 CrossrefGoogle Scholar

  • [144] Yang Y., Li Q., Yang T., Hussain M., Shuaib A., Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats, J. Neurosurg., 2003, 98, 397-403 Google Scholar

  • [145] Yano A., Shingo T., Takeuchi A., Yasuhara T., Kobayashi K., Takahashi K., et al., Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia, J. Neurosurg., 2005, 103, 104-114 CrossrefGoogle Scholar

  • [146] Yao D.-L., Masonic K., Petullo D., Li Y.L., Lincoln C., Wibberley L., et al., Pretreatment with intravenous FGF-13 reduces infarct volume and ameliorates neurological deficits following focal cerebral ischemia in rats, Brain Res., 1999, 818, 140-146 Google Scholar

  • [147] Yasuhara T., Hara K., Maki M., Masuda T., Sanberg C.D., Sanberg P.R., et al., Dietary supplementation exerts neuroprotective effects in ischemic stroke model, Rejuvenation Res., 2008, 11, 201-214 CrossrefGoogle Scholar

  • [148] Yenari M.A., Palmer J.T., Sun G.H., de Crespigny A., Mosely M.E., Steinberg G.K., Time-course and treatment response with SNX-111, an N-type calcium channel blocker, in a rodent model of focal cerebral ischemia using diffusion-weighted MRI, Brain Res., 1996, 739, 36-45 Google Scholar

  • [149] Yu G., Hess D.C., Borlongan C.V., Combined cyclosporine-A and methylprednisolone treatment exerts partial and transient neuroprotection against ischemic stroke, Brain Res., 2004, 1018, 32-37 Google Scholar

  • [150] Zhang F., Wang S., Signore A.P., Chen J., Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia, Stroke, 2007, 38, 2329-2336 CrossrefGoogle Scholar

  • [151] Zhang J., Han X.Z., Li X., Luo Y., Zhao H.P., Yang M., et al., Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats, Int. J. Nanomed., 2012, 7, 4299-4310 CrossrefGoogle Scholar

  • [152] Zhang J.X., Zhang H.X., Li L.F., Li Y.H., Effects of NG-nitro-L-arginine on focal cerebral ischemic injury in rats, Neural Regen. Res., 2006, 1, 40-43 Google Scholar

  • [153] Zhang R.L., Zhang C., Zhang L., Roberts C., Lu M., Kapke A., et al., Synergistic effect of an endothelin type A receptor antagonist, S-0139, with rtPA on the neuroprotection after embolic stroke, Stroke, 2008, 39, 2830-2836 Google Scholar

  • [154] Zhang R.-L., Chopp M., Chen H., Garcia J.H., Zhang Z.G., Postischemic (1 hour) hypothermia significantly reduces ischemic cell damage in rats subjected to 2 hours of middle cerebral artery occlusion, Stroke, 1993, 24, 1235-1240 CrossrefGoogle Scholar

  • [155] Zhang X.L., Zhang X.J., Wang C.H., Li Y.H., Dong L.P., Cui L.L., et al., Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-kB expression, ameliorated BBB permeability, Brain Res., 2012, 1459, 61-70 Google Scholar

  • [156] Zhang Y., Feustel P.J., Kimelberg H.K., Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat, Brain Res., 2006, 1094, 200-206 Google Scholar

  • [157] Zhang Y., Wang L., Li J., Wang X.-L., 2-(1-Hydroxypentyl)-benzoate increases cerebral blood flow and reduces infarct volume in rats model of transient focal cerebral ischemia, J. Pharmacol. Exp. Ther., 2006, 317, 973-979 Google Scholar

  • [158] Zhao B., Zhao C.Z., Zhang X.Y., Huang X.Q., Shi W.Z., Fang S.H., et al., The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats, Neuroscience, 2012, 202, 42-57 Google Scholar

  • [159] Zhao X., Liu S.J., Zhang J., Strong R., Aronowski J., Grotta J.C., Combining insulin-like growth factor derivatives plus caffeinol produces robust neuroprotection after stroke in rats, Stroke, 2005, 36, 129-134 CrossrefGoogle Scholar

  • [160] Zhao Y.J., Yang G.Y., Ben-Joseph O., Ross B.D., Chenevert T.L., Domino E.F., Acute ethanol effects on focal cerebral ischemia in fasted rats, Alcohol. Clin. Exp. Res., 1998, 22, 717-722 CrossrefGoogle Scholar

  • [161] Vaughan C.J., Delanty N., Neuroprotective properties of statins in cerebral ischemia and stroke, Stroke, 1999, 30, 1969-1973 CrossrefGoogle Scholar

  • [162] Wood W.G., Eckert G.P., Igbavboa U., Müller W.E., Statins and neuroprotection: a prescription to move the field forward, Ann. NY Acad. Sci., 2010, 1199, 69-76 Google Scholar

  • [163] Hjalmarsson C., Bokemark L., Manhem K., Mehlig K., Andersson B., The effect of statins on acute and long-term outcome after ischemic stroke in the elderly, Am. J. Geriatr. Pharmacother., 2012, 10, 313-322 Google Scholar

  • [164] Makihara N., Kamouchi M., Hata J., Matsuo R., Ago T., Kuroda J., et al., Statins and the risks of stroke recurrence and death after ischemic stroke: the Fukuoka Stroke Registry, Atherosclerosis, 2013, 231, 211-215 CrossrefGoogle Scholar

  • [165] Moonis M., High-dose statins should be used in all acute ischemic strokes, Stroke, 2012, 43, 1992-1993 CrossrefGoogle Scholar

About the article

Received: 2014-10-28

Accepted: 2014-12-11

Published Online: 2015-02-11


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0006.

Export Citation

©2015 Peng-Fei Wang et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in