Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

Atomic force microscopy as an advanced tool in neuroscience

Maja Jazvinšćak Jembrek / Goran Šimić
  • Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick R. Hof
  • Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suzana Šegota
  • Division for Marine and Environmental Research, Ruđer Bošković Institute, POB 180, Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-11 | DOI: https://doi.org/10.1515/tnsci-2015-0011


This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions.

Keywords: Atomic force microscopy; Force spectroscopy; Membrane nanomechanics; Neuron; Neuroscience; PeakForce Quantitative Nanomechanical Mapping


  • [1] Power J.D., Fair D.A., Schlaggar B.L., Petersen S.E., The development of human functional brain networks, Neuron, 2010, 67, 735-748 CrossrefGoogle Scholar

  • [2] Sporns O., Structure and function of complex brain networks, Dialogues Clin. Neurosci., 2013, 15, 247-262 Google Scholar

  • [3] London M., Häusser M., Dendritic computation, Annu. Rev. Neurosci., 2005, 28, 503-532 CrossrefGoogle Scholar

  • [4] Spruston N., Pyramidal neurons: dendritic structure and synaptic integration, Nat. Rev. Neurosci., 2008, 9, 206-221 CrossrefGoogle Scholar

  • [5] Son J.H., Shim J.H., Kim K.H., Ha J.Y., Han J.Y., Neuronal autophagy and neurodegenerative diseases, Exp. Mol. Med., 2012, 44, 89-98 CrossrefGoogle Scholar

  • [6] Levenson R.W., Sturm V.E., Haase C.M., Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology, Annu. Rev. Clin. Psychol., 2014, 10, 581-606 CrossrefGoogle Scholar

  • [7] Luo L., O’Leary D.D., Axon retraction and degeneration in development and disease, Annu. Rev. Neurosci., 2005, 28, 127-156 CrossrefGoogle Scholar

  • [8] Bredesen D.E., Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence, Mol. Neurodegener., 2009, 4, 27 CrossrefGoogle Scholar

  • [9] Vanderhaeghen P., Cheng H.J., Guidance molecules in axon pruning and cell death, Cold Spring Harb. Perspect. Biol., 2010, 2, a001859 Google Scholar

  • [10] Millecamps S., Julien J.P., Axonal transport deficits and neurodegenerative diseases, Nat. Rev. Neurosci., 2013, 14, 161-176 CrossrefGoogle Scholar

  • [11] Hegde M.L., Hegde P.M., Rao K.S., Mitra S., Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword, J. Alzheimers Dis., 2011, 24 (Suppl. 2), 183-198 Google Scholar

  • [12] Sultana R., Perluigi M., Butterfield D., Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain, Free Rad. Biol. Med., 2013, 62, 157-169 Google Scholar

  • [13] Takalo M., Salminen A., Soininen H., Hiltunen M., Haapasalo A., Protein aggregation and degradation mechanisms in neurodegenerative diseases, Am. J. Neurodegener. Dis., 2013, 2, 1-14 Google Scholar

  • [14] Brettschneider J., Del Tredici K., Lee V.M., Trojanowski J.Q., Spreading of pathology in neurodegenerative diseases: a focus on human studies, Nat. Rev. Neurosci., 2015, 16, 109-120 CrossrefGoogle Scholar

  • [15] Weaver J., Single-molecule technique links structural fluctuations of proteins to brain diseases, PLoS Biol., 2012, 10, e1001338 CrossrefGoogle Scholar

  • [16] Pedersen J.T., Heegaard N.H., Analysis of protein aggregation in neurodegenerative disease, Anal. Chem., 2013, 85, 4215-4227 CrossrefGoogle Scholar

  • [17] Nasrallah I.M., Wolk D.A., Multimodality imaging of Alzheimer disease and other neurodegenerative dementias, 2014, J. Nucl. Med., 55, 2003-2011 CrossrefGoogle Scholar

  • [18] Spedden E., Staii C., Neuron biomechanics probed by atomic force microscopy, Int. J. Mol. Sci., 2013, 14, 16124-16140 CrossrefGoogle Scholar

  • [19] Franze K., Atomic force microscopy and its contribution to understanding the development of the nervous system, Curr. Opin. Genet. Dev., 2011, 21, 530-537 CrossrefGoogle Scholar

  • [20] Friedbacher G., Fuchs H., Classification of scanning probe microscopies, Pure Appl. Chem., 1999, 71, 1337-1357 CrossrefGoogle Scholar

  • [21] Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhik S.A., Zhdanov R.I., Atomic force microscopy probing of cell elasticity, Micron, 2007, 38, 824-833 CrossrefGoogle Scholar

  • [22] Yang Y., Mayer K.M., Hafner J.H., Quantitative membrane electrostatics with the atomic force microscope, Biophys. J., 2007, 92, 1966-1974 CrossrefGoogle Scholar

  • [23] Carvalho F.A., Santos N.C., Atomic force microscopy-based force spectroscopy - biological and biomedical applications, IUBMB Life, 2012, 64, 465-472 CrossrefGoogle Scholar

  • [24] Tessmer I., Kaur P., Lin J., Wang H., Investigating bioconjugation by atomic force microscopy, J. Nanobiotechnology, 2013, 11, 25 CrossrefGoogle Scholar

  • [25] Kim D., Sahin O., Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy, Nat. Nanotechnol., 2015, 10, 264-269 CrossrefGoogle Scholar

  • [26] Alexander S., Hellemans L., Marti O., Schneir J., Elings V., Hansma P. K., et al., An atomic resolution atomic force microscope implemented using an optical lever, J. Appl. Phys., 1989, 65, 164-167 CrossrefGoogle Scholar

  • [27] Teschke O., de Souza EF., Water molecule clusters measured at water/air interfaces using atomic force microscopy, Phys. Chem. Chem. Phys., 2005, 7, 3856-3865 CrossrefGoogle Scholar

  • [28] Ding S.Y., Liu Y.S., Imaging cellulose using atomic force microscopy, Methods Mol. Biol., 2012, 908, 23-30 Google Scholar

  • [29] Santos S., Billingsley D., Thomson N., Atomic force microscopy imaging of macromolecular complexes, Methods Mol. Biol., 2013, 950, 315-341 Google Scholar

  • [30] Au N.P., Fang Y., Xi N., Lai K.W., Ma C.H., Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy, Nanomedicine, 2014, 10, 1323-1333 CrossrefGoogle Scholar

  • [31] Xiong Y., Lee A.C., Suter D.M., Lee G.U., Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy, Biophys. J., 2009, 96, 5060-5072 CrossrefGoogle Scholar

  • [32] Benzina O., Szabo V., Lucas O., Saab M.B., Cloitre T., Scamps F., et al., Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons, J. Biomed. Opt., 2013, 18, 106014 CrossrefGoogle Scholar

  • [33] Martin M., Benzina O., Szabo V., Vegh A.G., Lucas O., Cloitre T., et al., Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury, PLoS One, 2013, 8, e56286 Google Scholar

  • [34] Dufrêne Y.F., Evans E., Engel A., Helenius J., Gaub H.E., Müller D.J., Five challenges to bringing single-molecule force spectroscopy into living cells, Nat. Methods, 2011, 8, 123-127 CrossrefGoogle Scholar

  • [35] Mustata M., Ritchie K., McNally H.A., Neuronal elasticity as measured by atomic force microscopy, J. Neurosci. Methods, 2010, 186, 35-41 Google Scholar

  • [36] McNally H.A., Borgens R.B., Three-dimensional imaging of living and dying neurons with atomic force microscopy, J. Neurocytol., 2004, 33, 251-258 CrossrefGoogle Scholar

  • [37] Laishram J., Kondra S., Avossa D., Migliorini E., Lazzarino M., Torre V., A morphological analysis of growth cones of DRG neurons combining atomic force and confocal microscopy, J. Struct. Biol., 2009, 16, 366-377 CrossrefGoogle Scholar

  • [38] Wang M.S., Boddapati S., Emadi S., Sierks M.R., Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model, BMC Neurosci., 2010, 11, 57-67 CrossrefGoogle Scholar

  • [39] Bustamante C., Rivetti C., Keller D.J., Scanning force microscopy under aqueous solutions, Curr. Opin. Struct. Biol., 1997, 7, 709-716 CrossrefGoogle Scholar

  • [40] Magdesian M.H., Sanchez F.S., Lopez M., Thostrup P., Durisic N., Belkaid W., et al., Atomic force microscopy reveals important differences in axonal resistance to injury, Biophys. J., 2012, 103, 405-414 CrossrefGoogle Scholar

  • [41] McNally H.A., Rajwa B., Sturgis J., Robinson J.P., Comparative three-dimensional imaging of living neurons with confocal and atomic force microscopy, J. Neurosci. Methods, 2005, 142, 177-184 Google Scholar

  • [42] Ricci D., Grattarola M., Tedesco M., The growth cones of living neurons probed by the atomic force microscope, Methods Mol. Biol., 2011, 736, 243-257 Google Scholar

  • [43] Bernick K.B., Prevost T.P., Suresh S., Socrate S., Biomechanics of single cortical neurons, Acta Biomater., 2011, 7, 1210-1219 CrossrefGoogle Scholar

  • [44] Spedden E., White J.D., Naumova E.N., Kaplan D.L., Staii C., Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy, Biophys. J., 2012, 103, 867-877 CrossrefGoogle Scholar

  • [45] Costa K.D., Single-cell elastography: probing for disease with the atomic force microscope, Dis. Markers, 2003-2004, 19, 139-154 CrossrefGoogle Scholar

  • [46] Benoit M., Gaub H.E., Measuring cell adhesion forces with the atomic force microscope at the molecular level, Cells Tissues Organs, 2002, 172, 174-189 Google Scholar

  • [47] Simon A., Cohen-Bouhacina T., Porté M.C., Aimé J.P., Amédée J., Bareille R., et al., Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy, Cytometry A, 2003, 54, 36-47 CrossrefGoogle Scholar

  • [48] Murakoshi M., Yoshida N., Iida K., Kumano S., Kobayashi T., Wada H., Local mechanical properties of mouse outer hair cells: atomic force microscopic study, Auris Nasus Larynx, 2006, 33, 149-157 CrossrefGoogle Scholar

  • [49] Uttara B., Singh A.V., Zamboni P., Mahajan R.T., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 2009, 7, 65-74 CrossrefGoogle Scholar

  • [50] Federico A., Cardaioli E., Da Pozzo P., Formichi P., Gallus G.N., Radi E., Mitochondria, oxidative stress and neurodegeneration, J. Neurol. Sci., 2012, 322, 2542-2562 Google Scholar

  • [51] D’Agostino D.P., Olson J.E., Dean J.B., Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells, Neuroscience, 2009, 159, 1011-1022 Google Scholar

  • [52] Singh A.V., Vyas V., Montani E., Cartelli D., Parazzoli D., Oldani A., et al., Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells, J. Neurosci. Rural Pract., 2012, 3, 301-310 CrossrefGoogle Scholar

  • [53] Hoskins C., Cuschieri A., Wang L., The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism, J. Nanobiotechnol., 2012, 10, 15-26 Google Scholar

  • [54] Tiryaki V.M., Khan A.A., Ayres V.M., AFM Feature definition for neural cells on nanofibrillar tissue scaffolds, Scanning, 2012, 34, 316-324 CrossrefGoogle Scholar

  • [55] Tiryaki V.M., Ayres V.M., Khan A.A., Ahmed I., Shreiber D.I., Meiners S., Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes, Int. J. Nanomed., 2012, 7, 3891-3905 CrossrefGoogle Scholar

  • [56] Keung A.J., de Juan-Pardo E.M., Schaffer D.V., Kumar S., Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells, Stem Cells, 2011, 29, 1886-1897 CrossrefGoogle Scholar

  • [57] Clark C.G., Sun Z., Meininger G.A., Potts J.T., Atomic force microscopy to characterize binding properties of α7-containing nicotinic acetylcholine receptors on neurokinin-1 receptor-expressing medullary respiratory neurons, Exp. Physiol., 2013, 98, 415-424 Google Scholar

  • [58] Kawas L.H., Benoist C.C., Harding J.W., Wayman G.A., Abu-Lail N.I., Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy, Nanomedicine, 2013, 9, 428-438 CrossrefGoogle Scholar

  • [59] Neuman K.C., Nagy A., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods, 2008, 5, 491-505 CrossrefGoogle Scholar

  • [60] Jiang F.X., Lin D.C., Horkay F., Langrana N.A., Probing mechanical adaptation of neurite outgrowth on a hydrogel material using atomic force microscopy, Ann. Biomed. Eng., 2011, 39, 706-713 CrossrefGoogle Scholar

  • [61] Gomez T. M., Roche F. K., Letourneau P. C., Chick sensory neuronal growth cones distinguish fibronectin from laminin by making substratum contacts that resemble focal contacts, J. Neurobiol., 1996, 29, 18-34 CrossrefGoogle Scholar

  • [62] Flanagan L.A., Ju Y.E, Marg B., Osterfield M., Janmey P.A., Neurite branching on deformable substrates, Neuroreport, 2002, 13, 2411-2415 CrossrefGoogle Scholar

  • [63] Georges P.C., Miller W.J., Meaney D.F, Sawyer E.S., Janmey P.A., Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures, Biophys. J., 2006, 90, 3012-3018 CrossrefGoogle Scholar

  • [64] Lu Y.B., Franze K., Seifert G., Steinhäuser C., Kirchhoff F., Wolburg H., et al., Viscoelastic properties of individual glial cells and neurons in the CNS, Proc. Natl. Acad. Sci. USA, 2006, 103, 17759-17764 CrossrefGoogle Scholar

  • [65] Gavazzo P., Vassalli M., Costa D., Pagano A., Novel ncRNAs transcribed by Pol III and elucidation of their functional relevance by biophysical approaches, Front. Cell. Neurosci., 2013, 7, 203 Google Scholar

  • [66] Lulevich V., Zimmer C.C., Hong H.S., Jin L.W., Liu G.Y., Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-β peptide and neuronal cell interactions, Proc. Natl. Acad. Sci. USA, 2010, 107, 13872-13877 CrossrefGoogle Scholar

  • [67] Mescola A., Vella S., Scotto M., Gavazzo P., Canale C., Diaspro A., et al., Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy, J. Mol. Recognit., 2012, 25, 270-277 CrossrefGoogle Scholar

  • [68] Hervás R., Oroz J., Galera-Prat A., Goñi O., Valbuena A., Vera A.M., et al., Common features at the start of the neurodegeneration cascade, PLoS Biol., 2012, 10, e1001335 CrossrefGoogle Scholar

  • [69] Ponce L., Berquand A., Petersen M., Hafner M., Combining atomic force microscopy and live cell imaging to study calcium responses in dorsal root ganglion neurons to a locally applied mechanical stimulus, In: Méndez-Vilas A., Díaz J. (Eds.) Microscopy: science, technology, applications and education, Formatex Research Center, Badajoz, 2010, 530-536 Google Scholar

  • [70] Tiryaki V.M., Ayres V.M, Ahmed I., Shreiber D.I., Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces, Nanomedicine, 2015, 10, 529-545 CrossrefGoogle Scholar

  • [71] Man A., Neurite outgrowth in fibrin gels is regulated by substrate stiffness, Tissue Eng. Part A, 2011, 17, 2931-2942 CrossrefGoogle Scholar

  • [72] Fang Y., Iu C.Y., Lui C.N., Zou Y., Fung C.K., Li H.W., et al., Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration, Sci. Rep., 2014, 4, 7074 CrossrefGoogle Scholar

  • [73] Shibata M., Uchihashi T., Ando T., Yasuda R., Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells, Sci. Rep., 2015, 5, 8724 CrossrefGoogle Scholar

About the article

Received: 2015-04-22

Accepted: 2015-06-05

Published Online: 2015-06-11

Citation Information: Translational Neuroscience, Volume 6, Issue 1, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0011.

Export Citation

©2015 Maja Jazvinšćak Jembrek et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maja Jazvinšćak Jembrek, Josipa Vlainić, Vida Čadež, Suzana Šegota, and Etienne Dague
PLOS ONE, 2018, Volume 13, Number 10, Page e0200119

Comments (0)

Please log in or register to comment.
Log in