Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

The effect of selective head-neck cooling on physiological and cognitive functions in healthy volunteers

Kevin Jackson / Rachael Rubin
  • Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA
  • Carle Foundation Hospital Urbana, Il 61801, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicole Van Hoeck / Tommy Hauert / Valentina Lana / Huan Wang
  • Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA
  • Carle Foundation Hospital Urbana, Il 61801, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-26 | DOI: https://doi.org/10.1515/tnsci-2015-0012

Abstract

In general, brain temperatures are elevated during physical sporting activities; therefore, reducing brain temperature shortly after a sports-related concussion (SRC) could be a promising intervention technique. The main objective of this study was to examine the effects of head and neck cooling on physiological and cognitive function in normal healthy volunteers. Twelve healthy volunteers underwent two different sessions of combined head and neck cooling, one session with a cold pack and one session with a room temperature pack. Physiological measurements included: systolic/diastolic blood pressure, pulse oximetry, heart rate, and sublingual and tympanic temperature. Cognitive assessment included: processing speed, executive function, and working memory tasks. Physiological measurements were taken pre-, mid- and post-cooling, while cognitive assessments were done before and after cooling. The order of the sessions was randomized. There was a significant decrease in tympanic temperature across both sessions; however more cooling occurred when the cold pack was in the device. There was no significant decrease in sublingual temperature across either session. The observed heart rates, pulse oximetry, systolic and diastolic blood pressure during the sessions were all within range of a normal healthy adult. Cognitive assessment remained stable across each session for both pre- and post-cooling. We propose that optimizing brain temperature management after brain injury using head and neck cooling technology may represent a sensible, practical, and effective strategy to potentially enhance recovery and perhaps minimize the subsequent short and long term consequences from SRC.

Keywords: Athletics; Brain; Concussion; Feasibility; Intervention

References

  • Google Scholar

  • [1] Rutland-Brown W., Langlois J.A., Thomas K.E., Xi Y.L., Incidence of traumatic brain injury in the United States, 2003, J. Head Trauma Rehabil., 2006, 21, 544-548 Google Scholar

  • [2] De Beaumont L., Lassonde M., Leclerc S., Théoret H., Long-term and cumulative effects of sports concussion on motor cortex inhibition, Neurosurgery, 2007, 61, 329-336, discussion 336-337 CrossrefWeb of ScienceGoogle Scholar

  • [3] De Beaumont L., Tremblay S., Henry L.C., Poirier J., Lassonde M., Théoret H., Motor system alterations in retired former athletes: the role of aging and concussion history, BMC Neurol., 2013, 13, 109 Web of ScienceCrossrefGoogle Scholar

  • [4] DeKosky S.T., Ikonomovic M.D., Gandy S., Traumatic brain injury: football, warfare, and long-term effects, Minn. Med., 2010, 93, 46-47 Google Scholar

  • [5] Peskind E.R., Brody D., Cernak I., McKee A., Ruff R.L., Military- and sports-related mild traumatic brain injury: clinical presentation, management, and long-term consequences, J. Clin. Psychiatry, 2013, 74, 180-188, quiz 188 Web of ScienceCrossrefGoogle Scholar

  • [6] Schretlen D.J., Shapiro A.M., A quantitative review of the effects of traumatic brain injury on cognitive functioning, Int. Rev. Psychiatry, 2003, 15, 341-349 CrossrefGoogle Scholar

  • [7] Shultz S.R., Bao F., Omana V., Chiu C., Brown A., Cain D.P., Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion, J. Neurotrauma, 2012, 29, 281-294 CrossrefWeb of ScienceGoogle Scholar

  • [8] Langlois J.A., Rutland-Brown W., Wald M.M., The epidemiology and impact of traumatic brain injury: a brief overview, J. Head Trauma Rehabil., 2006, 21, 375-378 Google Scholar

  • [9] Thurman D.J., Alverson C., Dunn K.A., Guerrero J., Sniezek J.E., Traumatic brain injury in the United States: a public health perspective, J. Head Trauma Rehabil., 1999, 14, 602-615 Google Scholar

  • [10] DeKosky S.T., Ikonomovic M.D., Gandy S., Traumatic brain injury - football, warfare, and long-term effects, N. Engl. J. Med., 2010, 363, 1293-1296 Web of ScienceGoogle Scholar

  • [11] Wang H., Olivero W., Lanzino G., Elkins W., Rose J., Honings D., et al., Rapid and selective cerebral hypothermia achieved using a cooling helmet, J. Neurosurg., 2004, 100, 272-277 CrossrefGoogle Scholar

  • [12] Wang H., Wang B., Jackson K., Miller C.M., Hasadsri L., Llano D., et al., A novel head-neck cooling device for concussion injury in contact sports, Transl. Neurosci., 2014, 6, 20-31 Web of ScienceGoogle Scholar

  • [13] Lee J.K., Koh A.C., Koh S.X., Liu G.J., Nio A.Q., Fan P.W., Neck cooling and cognitive performance following exercise-induced hyperthermia, Eur. J. Appl. Physiol., 2014, 114, 375-384 Web of ScienceCrossrefGoogle Scholar

  • [14] Godek S.F., Bartolozzi A.R., Godek J.J., Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment, Br. J. Sports Med., 2005, 39, 205-211 Google Scholar

  • [15] Godek S.F., Godek J.J., Bartolozzi A.R., Hydration status in college football players during consecutive days of twice-a-day preseason practices, Am. J. Sports Med., 2005, 33, 843-851 CrossrefGoogle Scholar

  • [16] Nybo L., Moller K., Volianitis S., Nielsen B., Secher N.H., Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans, J. Appl. Physiol., 2002, 93, 58-64 CrossrefGoogle Scholar

  • [17] Ozgünen K.T., Kurdak S.S., Maughan R.J., Zeren C., Korkmaz S., Yazici Z., et al., Effect of hot environmental conditions on physical activity patterns and temperature response of football players, Scand. J. Med. Sci. Sports, 2010, 20 (Suppl. 3), 140-147 Web of ScienceGoogle Scholar

  • [18] Bailes J.E., Petraglia A.L., Omalu B.I., Nauman E., Talavage T., Role of subconcussion in repetitive mild traumatic brain injury, J. Neurosurg., 2013, 119, 1235-1245 CrossrefGoogle Scholar

  • [19] Broglio S.P., Eckner J.T., Kutcher J.S., Field-based measures of head impacts in high school football athletes, Curr. Opin. Pediatr., 2012, 24, 702-708 Web of ScienceCrossrefGoogle Scholar

  • [20] Broglio S.P., Eckner J.T., Martini D., Sosnoff J.J., Kutcher J.S., Randolph C., Cumulative head impact burden in high school football, J. Neurotrauma, 2011, 28, 2069-2078 Web of ScienceCrossrefGoogle Scholar

  • [21] Broglio S.P., Eckner J.T., Paulson H.L., Kutcher J.S., Cognitive decline and aging: the role of concussive and subconcussive impacts, Exerc. Sport Sci. Rev., 2012, 40, 138-144 Google Scholar

  • [22] Gavett B.E., Stern R.A., McKee A.C., Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma, Clin. Sports Med., 2011, 30, 179-188 CrossrefWeb of ScienceGoogle Scholar

  • [23] McCrory P., Sports concussion and the risk of chronic neurological impairment, Clin. J. Sport Med., 2011, 21, 6-12 CrossrefWeb of ScienceGoogle Scholar

  • [24] Sakurai A., Atkins C.M., Alonso O.F., Bramlett H.M., Dietrich W.D., Mild hyperthermia worsens the neuropathological damage associated with mild traumatic brain injury in rats, J. Neurotrauma, 2012, 29, 313-321 CrossrefGoogle Scholar

  • [25] Miyauchi T., Wei E.P., Povlishock J.T., Evidence for the therapeutic efficacy of either mild hypothermia or oxygen radical scavengers after repetitive mild traumatic brain injury, J. Neurotrauma, 2014, 31, 773-781 Web of ScienceCrossrefGoogle Scholar

  • [26] Wilcox C.S., Effects of tempol and redox-cycling nitroxides in models of oxidative stress, Pharmacol. Ther., 2010, 126, 119-145 Web of ScienceCrossrefGoogle Scholar

  • [27] Titus D.J., Furones C., Atkins C.M., Dietrich W.D., Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia, Exp. Neurol., 2015, 263, 254-262 Web of ScienceGoogle Scholar

  • [28] Rolls E.T., Tovee M.J., Processing speed in the cerebral cortex and the neurophysiology of visual masking, Proc. Biol. Sci., 1994, 257, 9-15 Google Scholar

  • [29] Vendrell P., Junque C., Pujol J., Jurado M.A., Molet J., Grafman J., The role of prefrontal regions in the Stroop task, Neuropsychologia, 1995, 33, 341-352 CrossrefGoogle Scholar

  • [30] Owen A.M., McMillan K.M., Laird A.R., Bullmore E., N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies, Hum. Brain Mapp., 2005, 25, 46-59 CrossrefGoogle Scholar

  • [31] Covaciu L., Weis J., Bengtsson C., Allers M., Lunderquist A., Ahlström H., et al., Brain temperature in volunteers subjected to intranasal cooling, Intensive Care Med., 2011, 37, 1277-1284 Web of ScienceGoogle Scholar

  • [32] Georgiadis D., Schwarz S., Kollmar R., Schwab S., Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach, Stroke, 2001, 32, 2550-2553 CrossrefGoogle Scholar

  • [33] Hemmen T.M., Lyden P.D., Induced hypothermia for acute stroke, Stroke, 2007, 38, 794-799 CrossrefGoogle Scholar

  • [34] Kammersgaard L.P., Rasmussen B.H., Jørgensen H.S., Reith J., Weber U., Olsen T.S., Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a casecontrol study: the Copenhagen Stroke Study, Stroke, 2000, 31, 2251- 2256 CrossrefGoogle Scholar

  • [35] De Beaumont L., Brisson B., Lassonde M., Jolicoeur P., Long-term electrophysiological changes in athletes with a history of multiple concussions, Brain Inj., 2007, 21, 631-644 Web of ScienceGoogle Scholar

  • [36] De Beaumont L., Fiocco A.J., Quesnel G., Lupien S., Poirier J., Altered declarative memory in introverted middle-aged adults carrying the BDNF val66met allele, Behav. Brain Res., 2013, 253, 152-156 Web of ScienceGoogle Scholar

  • [37] Lovell M., The management of sports-related concussion: current status and future trends, Clin. Sports Med., 2009, 28, 95-111 CrossrefGoogle Scholar

  • [38] Cubon V.A., Putukian M., Boyer C., Dettwiler A., A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion, J. Neurotrauma, 2011, 28, 189-201 Web of ScienceCrossrefGoogle Scholar

  • [39] Slobounov S.M., Zhang K., Pennell D., Ray W., Johnson B., Sebastianelli W., Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study, Exp. Brain Res., 2010, 202, 341-354 CrossrefGoogle Scholar

  • [40] Vagnozzi R., Signoretti S., Cristofori L., Alessandrini F., Floris R., Isgro E., et al., Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients, Brain, 2010, 133, 3232-3242 Web of ScienceGoogle Scholar

  • [41] Jeter C.B., Hergenroeder G.W., Hylin M.J., Redell J.B., Moore A.N., Dash P.K., Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion, J. Neurotrauma, 2013, 30, 657-670 Web of ScienceCrossrefGoogle Scholar

  • [42] Allison M.A., Kang Y.S., Bolte J.H.4th, Maltese M.R., Arbogast K.B., Validation of a helmet-based system to measure head impact biomechanics in ice hockey, Med. Sci. Sports Exerc., 2014, 46, 115-123 Web of ScienceCrossrefGoogle Scholar

  • [43] Beckwith J.G., Greenwald R.M., Chu J.J., Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform, Ann. Biomed. Eng., 2012, 40, 237-248 CrossrefWeb of ScienceGoogle Scholar

  • [44] Mihalik J.P., McCaffrey M.A., Rivera E.M., Pardini J.E., Guskiewicz K.M., Collins M.W., et al., Effectiveness of mouthguards in reducing neurocognitive deficits following sports-related cerebral concussion, Dent. Traumatol., 2007, 23, 14-20 Google Scholar

  • [45] Wang H., Wang B., Jackson K., Miller C.M., Hasadsri L., Llano D., et al., A novel head-neck cooling device for concussion injury in contact sports, Transl. Neurosci., 2015, 6, 20-31 Web of ScienceGoogle Scholar

  • [46] Kallmünzer B., Beck A., Schwab S., Kollmar R., Local head and neck cooling leads to hypothermia in healthy volunteers, Cerebrovasc. Dis., 2011, 32, 207-210 Web of ScienceCrossrefGoogle Scholar

  • [47] Koehn J., Kollmar R., Cimpianu C.L., Kallmünzer B., Moeller S., Schwab S., et al., Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure, Stroke, 2012, 43, 2142-2148 Web of ScienceCrossrefGoogle Scholar

  • [48] Kochanek P.M., Jackson T.C., It might be time to let cooler heads prevail after mild traumatic brain injury or concussion, Exp. Neurol., 2015, 267,13-17 Web of ScienceGoogle Scholar

About the article

Received: 2015-03-18

Accepted: 2015-06-07

Published Online: 2015-06-26


Citation Information: Translational Neuroscience, Volume 6, Issue 1, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0012.

Export Citation

©2015 Kevin Jackson et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kiyoshi ITAO, Hiroshi HOSAKA, Kaoru KITTAKA, Mikio TAKAHASHI, and Guillaume LOPEZ
Journal of the Japan Society for Precision Engineering, 2016, Volume 82, Number 10, Page 919
[2]
Guillaume LOPEZ, Yasuhiro KAWAHARA, Yuta SUZUKI, Mikio TAKAHASHI, Hiroki TAKAHASHI, and Masanori WADA
Mechanical Engineering Journal, 2016, Volume 3, Number 1, Page 15-00537

Comments (0)

Please log in or register to comment.
Log in