Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Puzzle task ERP response: time-frequency and source localization analysis

Ahmed Almurshedi
  • Department of Physics, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
  • Physics Department, College of Science, Al-Muthanna University (IRAQ)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abd Khamim Ismail
  • Department of Physics, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-23 | DOI: https://doi.org/10.1515/tnsci-2015-0020


Perceptual decision making depends on the choices available for the presented task. Most event-related potential (ERP) experiments are designed with two options, such as YES or NO. In some cases, however, subjects may become confused about the presented task in such a way that they cannot provide a behavioral response. This study aims to put subjects into such a puzzled state in order to address the following questions: How does the brain respond during puzzling moments? And what is the brain’s response to a non-answerable task? To address these questions, ERP were acquired from the brain during a scintillation grid illusion task. The subjects were required to count the number of illusory dots, a task that was impossible to perform. The results showed the presence of N130 over the parietal area during the puzzling task. Coherency among the brain hemispheres was enhanced with the complexity of the task. The neural generators’ source localizations were projected to a multimodal complex covering the left postcentral gyrus, supramarginal gyrus, and angular gyrus. This study concludes that the brain component N130 is strongly related to perception in a puzzling task network but not the visual processing network.

Keywords: Puzzled response; Decision making; Event-related potential (ERP); Scintillation grid illusion; N130; Time-frequency analysis; Source localization analysis; Measure projection analysis


  • Google Scholar

  • [1] Greimel E., Trinkl M., Bartling J., Bakos S., Grossheinrich N., Schulte- Koerne G., Auditory selective attention in adolescents with major depression: an event-related potential study, J. Affect. Disord., 2015, 172, 445-452 Google Scholar

  • [2] Gherman S., Philiastides M. G., Neural representations of confidence emerge from the process of decision formation during perceptual choices, Neuroimage, 2015, 106, 134-143 CrossrefGoogle Scholar

  • [3] Philiastides M. G., Sajda P., Temporal characterization of the neural correlates of perceptual decision making in the human brain, Cereb. Cortex, 2006, 16, 509-518 CrossrefGoogle Scholar

  • [4] Philiastides M. G., Ratcliff R., Sajda P., Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram, J. Neurosci., 2006, J. Neurosci., 2006, 26, 8965-8975 CrossrefGoogle Scholar

  • [5] Philiastides M. G., Sajda P., EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making, J. Neurosci., 2007, 27, 13082-13091 CrossrefGoogle Scholar

  • [6] Sulykos I., Czigler I., Visual mismatch negativity is sensitive to illusory brightness changes, Brain Res., 2014, 1561, 48-59 CrossrefGoogle Scholar

  • [7] Qiu J., Wei D. T., Li H., Yu C. Y., Wang T., Zhang Q. L., The vase-face illusion seen by the brain: an event-related brain potentials study, Int. J. Psychophysiol., 2009, 74, 69-73 CrossrefGoogle Scholar

  • [8] Boutsen L., Humphreys G. W., Praamstra P., Warbrick T., Comparing neural correlates of configural processing in faces and objects: an ERP study of the Thatcher illusion, Neuroimage, 2006, 32, 352-367 CrossrefGoogle Scholar

  • [9] Gu X., Yang X., Zhu Y., Spatial-temporal analysis of face processing using an ERP study of the Thatcher illusion, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2007, 2496-2499 Google Scholar

  • [10] Kuefner D., Jacques C., Prieto E. A., Rossion B., Electrophysiological correlates of the composite face illusion: disentangling perceptual and decisional components of holistic face processing in the human brain, Brain Cogn., 2010, 74, 225-238 CrossrefGoogle Scholar

  • [11] Niedeggen M., Heil M., Ludowig E., Rolke B., Harris C. L., Priming illusory words: an ERP approach, Neuropsychologia, 2004, 42, 745- 753 CrossrefGoogle Scholar

  • [12] Chow W. Y., Phillips C., No semantic illusions in the “Semantic P600” phenomenon: ERP evidence from Mandarin Chinese, Brain Res., 2013, 1506, 76-93 Google Scholar

  • [13] Tune S., Schlesewsky M., Small S. L., Sanford A. J., Bohan J., Sassenhagen J., et al., Cross-linguistic variation in the neurophysiological response to semantic processing: evidence from anomalies at the borderline of awareness, Neuropsychologia, 2014, 56, 147-166 CrossrefGoogle Scholar

  • [14] Halgren E., Mendola J., Chong C. D. R., Dale A. M., Cortical activation to illusory shapes as measured with magnetoencephalography, Neuroimage, 2003, 18, 1001-1009 CrossrefGoogle Scholar

  • [15] Bakhtazad L., Shumikhina S., Molotchnikoff S., Analysis of frequency components of cortical potentials evoked by progressive misalignment off Kanizsa squares, Int. J. Psychophysiol., 2003, 50, 189-203 CrossrefGoogle Scholar

  • [16] Senkowski D., Rottger S., Grimm S., Foxe J. J., Herrmann C. S., Kanizsa subjective figures capture visual spatial attention: evidence from electrophysiological and behavioral dana, Neuropsychologia, 2005, 43, 872-886 CrossrefGoogle Scholar

  • [17] Brown C., Gruber T., Boucher J., Rippon G., Brock J., Gamma abnormalities during perception of illusory figures in autism, Cortex, 2005, 41, 364-376 CrossrefGoogle Scholar

  • [18] Sokhadze E. M., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M. F., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J. Autism Dev. Disord., 2009, 39, 619-634 CrossrefGoogle Scholar

  • [19] Stroganova T. A., Orekhova E. V., Prokofyev A. O., Tsetlin M. M., Gratchev V. V., Morozov A. A., et al., High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders, Cortex, 2012, 48, 701-717 CrossrefGoogle Scholar

  • [20] Qiu J., Li H., Zhang Q. L., Liu Q., Zhang F. H., The Müller-Lyer illusion seen by the brain: An event-related brain potentials study, Biol. Psychol., 2008, 77, 150-158 CrossrefGoogle Scholar

  • [21] Saint-Amour D., De Sanctis P., Molholm S., Ritter W., Foxe J. J., Seeing voices: high-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion, Neuropsychologia, 2007, 45, 587-597 CrossrefGoogle Scholar

  • [22] Van den Bos R., Den Heijer E., Vlaar S., Houx B., Exploring gender differences in decision-making using the Iowa Gambling Task, Murphy D., Longo D. (Eds.) Encyclopedia of psychology of decision making, Nova Science Publishers, New York, NY, USA, 2007, 1115 Google Scholar

  • [23] Odom J. V., Bach M., Brigell M., Holder G. E., McCulloch D. L., Tormene A. P., et al., ISCEV standard for clinical visual evoked potentials (2009 update), Doc. Ophthalmol., 2009, 120, 111-119 Google Scholar

  • [24] Geier J., Bernáth L., Hudák M., Séra L., Straightness as the main factor of the Hermann grid illusion, Perception, 2008, 37, 651-665 CrossrefGoogle Scholar

  • [25] Delorme A., Makeig S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Meth., 2004, 134, 9-21 Google Scholar

  • [26] Le Van Quyen M., Foucher J., Lachaux J. P., Rodriguez E., Lutz A., Martinerie J., et al., Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony, J. Neurosci. Meth., 2001, 111, 83-98 Google Scholar

  • [27] Schack B., Vath N., Petsche H., Geissler H. G., Moller E., Phase-coupling of theta-gamma EEG rhythms during short-term memory processing, Int. J. Psychophysiol., 2002, 44, 143-163 CrossrefGoogle Scholar

  • [28] Schack B., Klimesch W., Sauseng P., Phase synchronization between theta and upper alpha oscillations in a working memory task, Int. J. Psychophysiol., 2005, 57, 105-114 CrossrefGoogle Scholar

  • [29] Bigdely-Shamlo N., Mullen T., Kreutz-Delgado K., Makeig S., Measure projection analysis: a probabilistic approach to EEG source comparison and multi-subject inference, Neuroimage, 2013, 72, 287- 303 CrossrefGoogle Scholar

  • [30] Bigdely-Shamlo N., Vankov A., Ramirez R. R., Makeig S., Brain activitybased image classification from rapid serial visual presentation, IEEE Trans. Neural Syst. Rehabil. Eng., 2008, 16, 432-441 CrossrefGoogle Scholar

  • [31] Bell A. J., Sejnowski T. J., The “independent components” of natural scenes are edge filters, Vision Res., 1997, 37, 3327-3338 CrossrefGoogle Scholar

  • [32] Wascher E., Hoffmann S., Sänger J., Grosjean M., Visuo-spatial processing and the N1 component of the ERP, Psychophysiology, 2009, 46, 1270-1277 CrossrefGoogle Scholar

  • [33] Todo Y., Chen W., Tang H., Visual illusion and N1 and P1: ERP evidence, Int. J. Appl. Sci. Tech., 2012, 2, 8-13 Google Scholar

  • [34] Corbett J. E., Enns J. T., Handy T. C., Electrophysiological evidence for a post-perceptual influence of global visual context on perceived orientation, Brain Res., 2009, 1292, 82-92 Google Scholar

  • [35] Halgren E., Baudena P., Heit G., Clarke M., Marinkovic K., Spatiotemporal stages in face and word processing. 1. Depth recorded potentials in the human occipital and parietal lobes, J. Physiol., 1994, 88, 1-50 Google Scholar

  • [36] Wang Y. P., Kong J., Tang X. F., Zhuang D., Li S. W., Event-related potential N270 is elicited by mental conflict processing in human brain, Neurosci. Lett., 2000, 293, 17-20 Google Scholar

  • [37] Brown C. R., Clarke A. R., Barry R. J., Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task, Int. J. Psychophysiol., 2006, 62, 77-86 CrossrefGoogle Scholar

  • [38] Wang C. B., Ma Y. N., Han S. H., Self-construal priming modulates pain perception: event-related potential evidence, Cogn. Neurosci., 2014, 5, 3-9 CrossrefGoogle Scholar

  • [39] Almurshedi A., Ismail A. K., Measure projection analysis of VEP localization neuron generator, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2015, in press, DOI: 978-1-4799-6879-4/15 Google Scholar

  • [40] Roach B. J., Mathalon D. H., Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia, Schizophr. Bull., 2008, 34, 907- 926 CrossrefGoogle Scholar

  • [41] Porcaro C., Ostwald D., Hadjipapas A., Barnes G. R., Bagshaw A. P., The relationship between the visual evoked potential and the gamma band investigated by blind and semi-blind methods, Neuroimage, 2011, 56, 1059-1071 CrossrefGoogle Scholar

  • [42] Palva S., Palva J. M., New vistas for alpha-frequency band oscillations, Trends Neurosci., 2007, 30, 150-158 CrossrefGoogle Scholar

  • [43] VanRullen R., Macdonald J. S. P., Perceptual echoes at 10 Hz in the human brain, Curr. Biol., 2012, 22, 995-999 CrossrefGoogle Scholar

  • [44] Selimbeyoglu A., Keskin-Ergen Y., Demiralp T., What if you are not sure? Electroencephalographic correlates of subjective confidence level about a decision, Clin. Neurophysiol., 2012, 123, 1158-1167 Google Scholar

  • [45] Carter R., The brain book, Dorling Kindersley, London, UK, 2009 Google Scholar

  • [46] Wolf U., Rapoport M. J., Schweizer T. A., Evaluating the affective component of the cerebellar cognitive affective syndrome, J. Neuropsychiatry Clin. Neurosci., 2009, 21, 245-253 CrossrefGoogle Scholar

  • [47] Grabner R. H., Ansari D., Reishofer G., Stern E., Ebner F., Neuper C., Individual differences in mathematical competence predict parietal brain activation during mental calculation, Neuroimage, 2007, 38, 346-356 CrossrefGoogle Scholar

  • [48] Arsalidou M., Taylor M. J., Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations, Neuroimage, 2011, 54, 2382- 2393 CrossrefGoogle Scholar

  • [49] Seghier M. L., The angular gyrus: multiple functions and multiple subdivisions, Neuroscientist, 2013, 19, 43-61 CrossrefGoogle Scholar

  • [50] Chen Q., Weidner R., Vossel S., Weiss P. H., Fink G. R., Neural mechanisms of attentional reorienting in three-dimensional space, J. Neurosci., 2012, 32, 13352-13362 CrossrefGoogle Scholar

  • [51] Eickhoff S. B., Schleicher A., Zilles K., Amunts K., The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions, Cereb. Cortex, 2006, 16, 254-267 CrossrefGoogle Scholar

  • [52] Hartwigsen G., Baumgaertner A., Price C. J., Koehnke M., Ulmer S., Siebner H. R., Phonological decisions require both the left and right supramarginal gyri, Proc. Natl. Acad. Sci. USA, 2010, 107, 16494- 16499 CrossrefGoogle Scholar

About the article

Received: 2015-05-12

Accepted: 2015-08-28

Published Online: 2015-09-23

Citation Information: Translational Neuroscience, Volume 6, Issue 1, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0020.

Export Citation

©2015 Ahmed Almurshedi, Abd Khamim Ismail. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in