Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Arousal, motor control, and Parkinson’s disease

E. Garcia-Rill
  • Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Luster
  • Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. D’Onofrio
  • Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Mahaffey
  • Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-05 | DOI: https://doi.org/10.1515/tnsci-2015-0021

Abstract

This review highlights the most important discovery in the reticular activating system (RAS) in the last 10 years, the manifestation of gamma (γ) band activity in cells of the RAS, especially in the pedunculopontine nucleus (PPN), which is in charge of the high frequency states of waking and rapid eye movement sleep. This discovery is critical to understanding the modulation of movement by the RAS and how it sets the background over which we generate voluntary and triggered movements. The presence of γ band activity in the RAS is proposed to participate in the process of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. Early findings using stimulation of this region to induce arousal, and also to elicit stepping, are placed in this context. This finding also helps explain the novel use of PPN deep brain stimulation for the treatment of Parkinson’s disease, although considerable work remains to be done.

Keywords: Arousal; Calcium channels; Deep brain stimulation; Mu rhythm; Parkinson’s disease; P13 potential; P50 potential; Readiness potential

References

  • [1] Llinas R.R., I of the Vortex; from neurons to self, MIT Press, Cambridge, MA, USA, 2001 Google Scholar

  • [2] Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk, M., et al., Coherent oscillations: a mechanism of feature linking in the visual system?, Biol. Cybern., 1988, 60, 121-130 CrossrefGoogle Scholar

  • [3] Gray C.M., Singer W., Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA, 1989, 86, 1698-1702 CrossrefGoogle Scholar

  • [4] Llinas R.R., Ribary U., Contreras D., Pedroarena, C., The neuronal basis for consciousness, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1998, 353, 1841-1849 Google Scholar

  • [5] Pedroarena C., Llinás R.R., Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons, Proc. Natl. Acad. Sci. USA, 1997, 94, 724-728 CrossrefGoogle Scholar

  • [6] Steriade M., Cellular substrates of oscillations in corticothalamic systems during states of vigilance, In: Lydic R., Baghdoyan H.A. (Eds.), Handbook of behavioral state control. Cellular and molecular mechanisms, CRC Press, New York, NY, USA, 1999, 327-347 Google Scholar

  • [7] Searle J.R., How to study consciousness scientifically, Philos. Trans. Roy. Soc. Lond. B Biol. Sci., 1998, 353, 1935-1942 Google Scholar

  • [8] Garcia-Rill E., Waking and the reticular activating system in health and disease, Academic Press, New York, NY, USA, 2015 Google Scholar

  • [9] Kornhuber H.H., Deecke L., Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials Google Scholar

  • [in German], Pflug. Arch., 1995, 284, 1-17 Google Scholar

  • [10] Deecke L., Grozinger B., Kornhuber H.H., Voluntary finger movement in man: cerebral potentials and theory, Biol. Cyber., 1976, 23, 99-119 CrossrefGoogle Scholar

  • [11] Libet B., Gleason C.A., Wright E.W., Pearl D.K., Time of conscious intention to act in relation to onset of cerebral activity (readinesspotential). The unconscious initiation of a freely voluntary act, Brain, 1983, 106, 623-642 CrossrefGoogle Scholar

  • [12] Hallett M., Volitional control of movement: the physiology of free will, Clin. Neurophysiol., 2007, 118, 1179-1192 CrossrefGoogle Scholar

  • [13] Libet B., Do we have free will?, J. Consc. Studies, 1999, 9, 47-57 Google Scholar

  • [14] Gastaut H., Dongier M., Courtois G., On the significance of “wicket rhythms” (“rhythmes en arceau”) in psychosomatic medicine, Electroencephalogr. Clin. Neurophysiol., 1954, 6, 687-688 Google Scholar

  • [15] Cheyne D., Gaetz W., Garnero L., Lachaux J.P., Ducorps A., Schwartz D., et al., Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation, Cogn. Brain Res., 2003, 17, 599-611 CrossrefGoogle Scholar

  • [16] Green J.D., Arduini A.A., Hippocampal electrical activity in arousal, J. Neurophysiol., 1954, 17, 533-537 Google Scholar

  • [17] Pfurtscheller G., Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest, Electroencephalogr. Clin. Neurophysiol., 1992, 83, 62-69 CrossrefGoogle Scholar

  • [18] Ritter P., Moosmann M., Villringer A., Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex, Human Brain Mapp., 2009, 30, 1168-1187 Google Scholar

  • [19] Garcia-Rill E., Skinner R.D., The sleep state-dependent P50 midlatency auditory evoked potential, In: Lee-Chiong T., Carskadon M.A., Sateia J.M. (Eds.), Sleep medicine, Hanley & Belfus, Philadelphia, PA, USA, 2001, 697-704 Google Scholar

  • [20] Erwin R.J., Buchwald J.S., Midlatency auditory evoked responses: differential effects of sleep in the human, Electroencephalogr. Clin. Neurophysiol., 1986, 65, 383-392 CrossrefGoogle Scholar

  • [21] Erwin R.J., Buchwald J.S., Midlatency auditory evoked responses: differential recovery cycle characteristics, Electroencephalogr. Clin. Neurophysiol., 1986, 64, 417-423 CrossrefGoogle Scholar

  • [22] Buchwald J.S., Rubinstein E.H., Schwafel J., Strandburg R.J., Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist, Electroencephalogr. Clin. Neurophysiol., 1991, 80, 303-309 Google Scholar

  • [23] Kevanishvili Z., von Specht H., Human auditory evoked potentials during natural and drug-induced sleep, Electroencephalogr. Clin. Neurophysiol., 1979, 47, 280-288 CrossrefGoogle Scholar

  • [24] Garcia-Rill E., The pedunculopontine nucleus, Prog. Neurobiol., 1991, 36, 363-389 CrossrefGoogle Scholar

  • [25] Garcia-Rill E., Disorders of the reticular activating system, Med. Hypoth., 1997, 49, 379-387 CrossrefGoogle Scholar

  • [26] Reese N.B., Garcia-Rill E., Skinner R.D., The pedunculopontine nucleusauditory input, arousal and pathophysiology, Prog. Neurobiol., 1995, 47, 105-133 CrossrefGoogle Scholar

  • [27] Garcia-Rill E., Moran K., Garcia J., Findley W.M., Walton K., Strotman B., et al., Magnetic sources of the M50 response are localized to frontal cortex, Clin. Neurophysiol., 2008, 119, 388-398 CrossrefGoogle Scholar

  • [28] Miyazato H., Skinner R.D., Reese N.B., Boop F.A., Garcia-Rill E., A middle latency auditory evoked potential in the rat, Brain Res. Bull., 1995, 37, 265-273 Google Scholar

  • [29] Miyazato H., Skinner R.D., Reese N.B., Garcia-Rill E., Midlatency auditory evoked potentials and the startle response in the rat, Neuroscience, 1996, 25, 289-300 CrossrefGoogle Scholar

  • [30] Miyazato H., Skinner R.D., Garcia-Rill E., Sensory gating of the P13 midlatency auditory evoked potential and the startle response in the rat, Brain Res., 1999, 822, 60-71 Google Scholar

  • [31] Garcia-Rill E., The basal ganglia and the locomotor regions, Brain Res. Rev., 1986, 11, 47-63 CrossrefGoogle Scholar

  • [32] Shik M.L., Severin F.V., Orlovskiĭ G.N., Control of walking and running by means of electric stimulation of the midbrain Google Scholar

  • [in Russian], Biofizika, 1966, 11, 659-666 Google Scholar

  • [33] Garcia-Rill E., Skinner R.D., Gilmore S.A., Pallidal projections to the mesencephalic locomotor region (MLR) in the cat, Amer. J. Anat., 1981, 161, 311-322 Google Scholar

  • [34] Garcia-Rill E., Skinner R.D., Gilmore S.A., Owings R., Connections of the mesencephalic locomotor region (MLR). II. Afferents and efferents, Brain Res. Bull., 1983, 10, 63-71 CrossrefGoogle Scholar

  • [35] Garcia-Rill E., Skinner R.D., Fitzgerald J.A., Chemical activation of the mesencephalic locomotor region, Brain Res., 1985, 330, 43-54 Google Scholar

  • [36] Garcia-Rill E., Skinner R.D., Modulation of rhythmic function in the posterior midbrain, Neuroscience, 1988, 17, 639-654 CrossrefGoogle Scholar

  • [37] Garcia-Rill E., Skinner R.D., The mesencephalic locomotor region. I. Activation of a medullary projection site, Brain Res., 1987, 411, 1-12 Google Scholar

  • [38] Garcia-Rill E., Skinner R.D., Modulation of rhythmic functions by the brainstem, In: Shimamura M., Grillner S., Edgerton V.R. (Eds.), Neurobiology of human locomotion, Japan Sci. Soc. Press, Tokyo, Japan, 1991, 137-158 Google Scholar

  • [39] Garcia-Rill E., Reese N.B., Skinner R.D., Arousal and locomotion: from schizophrenia to narcolepsy, In: Holstege G., Saper C. (Eds.), The emotional motor system, Prog. Brain Res., 1996, 107, 417-434 CrossrefGoogle Scholar

  • [40] Skinner R.D., Kinjo N., Ishikawa Y., Biedermann J.A., Garcia-Rill E., Locomotor projections from the pedunculopontine nucleus to the medioventral medulla, Neuroreport, 1990, 1, 207-210 Google Scholar

  • [41] Skinner R.D., Garcia-Rill E., Brainstem modulation of rhythmic functions and behaviors, In: Klemm W.R., Vertes R. P. (Eds.), Brainstem mechanisms of behavior, John Wiley & Sons, New York, NY, USA, 1990, 419-445 Google Scholar

  • [42] Skinner R.D., Garcia-Rill E., Mesolimbic interactions with mesopontine modulation of locomotion, In: Kalivas P., Barnes C. (Eds.), Limbic motor circuits and neuropsychiatry, CRC Press, New York, NY, USA, 1994, 155-191 Google Scholar

  • [43] Skinner R.D., Kinjo N., Henderson V., Garcia-Rill E., Locomotor projections from the pedunculopontine nucleus to the spinal cord, Neuroreport, 1990, 1, 183-186 Google Scholar

  • [44] Mesulam M.M., Mufson E.J., Wainer B.H., Levey A.I., Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6), Neuroscience, 1983, 10, 1185-1201 CrossrefGoogle Scholar

  • [45] Wang H.L., Morales M., Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat, Eur. J. Neurosci., 2009, 29, 340-358 CrossrefGoogle Scholar

  • [46] Takakusaki K., Habaguchi T., Ohtinata-Sugimoto J., Saitoh K., Sakamoto T., Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction, Neuroscience, 2003, 119, 293-308 CrossrefGoogle Scholar

  • [47] Gut N.K., Winn P., Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism, J. Neurosci., 2015, 35, 4692-4803 Google Scholar

  • [48] Simon C., Kezunovic N., Ye M., Hyde J., Hayar A., Williams D.K., et al., Gamma band unit activity and population responses in the pedunculopontine nucleus (PPN), J. Neurophysiol., 2010, 104, 463- 474 Google Scholar

  • [49] Kezunovic N., Urbano F.J., Simon C., Hyde J., Smith K., Garcia-Rill E., Mechanism behind gamma band activity in the pedunculopontine nucleus (PPN), Eur. J. Neurosci., 2011, 34, 404-415 CrossrefGoogle Scholar

  • [50] Garcia-Rill E., Skinner R.D., The basal ganglia and the mesencephalic locomotor region. In: Grillner S., Stein P.S.G., Stuart D.G., Forssberg H., Herman R.M. (Eds.), Neurobiology of vertebrate locomotion, Macmillan Press, London, UK, 1986, 77-103 Google Scholar

  • [51] Hyde J., Kezunovic N., Urbano F.J., Garcia-Rill E., Spatiotemporal properties of high speed calcium oscillations in the pedunculopontine nucleus, J. Appl. Physiol., 2013, 115, 1402-1414 Google Scholar

  • [52] Moruzzi G., Magoun H.W., Brain stem reticular formation and activation of the EEG, Electroencephalogr. Clin. Neurophysiol., 1949, 1, 455-473 Google Scholar

  • [53] Chase M.H., Morales F.R., The control of motoneurons during sleep, In: Kryger M.H., Roth T., Dement W.C. (Eds.), Principles and practice of sleep medicine, WB Saunders, London, UK, 1994, 163-176 Google Scholar

  • [54] Kinjo N., Atsuta Y., Webber M., Kyle R., Skinner R.D., Garcia-Rill E., Medioventral medulla-induced locomotion, Brain Res. Bull., 1990, 24, 509-516 CrossrefGoogle Scholar

  • [55] Jankovic J., Parkinson’s disease: clinical features and diagnosis, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 368-376 Google Scholar

  • [56] Teo C., Rasco A.l., Al-Mefty K., Skinner R.D., Garcia-Rill E., Decreased habituation of midlatency auditory evoked responses in Parkinson’s disease, Mov. Disord., 1997, 12, 655-664 Google Scholar

  • [57] Orieux G., Francois C., Féger J., Yelnik J., Vila M., Ruberg M., et al., Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease, Neuroscience, 2000, 97, 79-88 CrossrefGoogle Scholar

  • [58] Breit S., Bouali-Benazzouz R., Benabid A., Benazzouz A., Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat, Eur. J. Neurosci., 2000, 14, 1833-1842 Google Scholar

  • [59] Karachi C., Grabli D., Bernard F.A., Tandé D., Wattiez N., Belaid H., et al., Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease, J. Clin. Inv., 2010, 120, 2745-2754 Google Scholar

  • [60] Grabli D., Karachi C., Folgoas E., Monfort M., Tandé D., Clark S., et al., Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems, J. Neurosci., 2013, 33, 11986- 11993 CrossrefGoogle Scholar

  • [61] Belaid H., Adrein J., Laffrat E., Tandé D., Karachi C., Grabli D., et al., Sleep disorders in parkinsonian macaques: effects of L-DOPA treatment and pedunculopontine nucleus lesion, J. Neurosci. 2014, 34, 9124-9133 CrossrefGoogle Scholar

  • [62] Teo C., Rasco A.l., Skinner R.D., Garcia-Rill E., Disinhibition of the sleep state-dependent P1 potential in Parkinson’s disease- improvement after pallidotomy, Sleep Res. Online, 1998, 1, 62-70 Google Scholar

  • [63] Garcia-Rill E., Hyde J., Kezunovic N., Urbano F.J., Petersen E., The physiology of the pedunculopontine nucleus- implications for deep brain stimulation, J. Neural Transm., 2014, 122, 225-235 Google Scholar

  • [64] Ballanger B., Lozano A.M., Moro E., van Eimeren T., Hamani C., Chen R., et al., Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson’s disease: a Google Scholar

  • [15O] H2O PET study, Human Brain Mapp., 2009, 30, 3901-3909 Google Scholar

  • [65] Dick J.P., Rothwell J.C., Day B.L., Cantello R., Buruma O., Gioux M., et al., The Beresitschaftspotential is abnormal in Parkinson’s disease, Brain, 1989, 112, 233-244 Google Scholar

  • [66] Simpson J.A., Khurabeit A.J., Readiness potential of cortical area 6 preceding self paced movement in Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry, 1987, 50, 1184-1191 CrossrefGoogle Scholar

  • [67] Ferraye M.U., Debu B., Fraix V., Goetz L., Ardouin C., Yelnik J., et al., Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease, Brain, 2010, 133, 205-214 Google Scholar

  • [68] Moro E., Hamani C., Poon Y.Y., Al-Khairallah T., Dostrovsky J.O., Hutchison W.D., et al., Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease, Brain, 2010, 133, 215-224 Google Scholar

  • [69] Stefani A., Lozano A.M., Peppe A., Stanzione P., Galati S., Troppei D., et al., Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease, Brain, 2007, 130, 1596-1607 Google Scholar

  • [70] Stefani A., Peppe A., Galati S., Stampanoni A., Bassi M., D’Angelo V., et al., The serendipity case of the pedunculopontine nucleus lowfrequency brain stimulation: chasing a gait response, finding sleep, and cognitive improvement, Front. Neurol., 2013, 4, 68 Google Scholar

  • [71] Alessandro S., Ceravolo R., Brusa L., Pierantozzi M., Costa A., Galati S., et al., Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive problems, J. Neurol. Sci., 2010, 289, 44-48 Google Scholar

  • [72] Civin M., Lombardi K.L., The preconscious and potential space, Psychoanal. Rev., 1990, 77, 573-585 Google Scholar

  • [73] Garcia-Rill E., Kezunovic N., D’Onofrio S., Luster B., Hyde J., Bisagno V., et al., Gamma band activity in the RAS- intracellular mechanisms, Exp. Brain Res., 2014, 232, 1509-1522 Google Scholar

  • [74] Urbano F.J., D’Onofrio S.M., Luster B.R., Beck P.B., Hyde J.R., Bisagno V., et al., Pedunculopontine nucleus gamma band activity - preconscious awareness, waking, and REM sleep, Front. Neurol., 2014, 5, 210 Google Scholar

  • [75] Balkin T.J., Braun A.R., Wesensten N.J., Jeffries K., Varga M., Baldwin P., et al., The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness, Brain, 2002, 125, 2308-2319 Google Scholar

  • [76] Garcia-Rill E., Reticular activating system, In: Stickgold R., Walker M. (Eds.), The neuroscience of sleep, Academic Press, London, UK, 2010, 133-138 Google Scholar

  • [77] Damasio A., Self comes to mind: constructing the conscious brain, Pantheon Books, New York, NY, USA, 2010 Google Scholar

  • [78] Penfield W., The mystery of the mind, Princeton University Press, Princeton, New Jersey, NJ, USA, 1975 Google Scholar

About the article

Received: 2015-07-23

Accepted: 2015-08-30

Published Online: 2015-10-05


Citation Information: Translational Neuroscience, Volume 6, Issue 1, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0021.

Export Citation

©2015 E. Garcia-Rill et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dimitri Ryczko and Réjean Dubuc
Frontiers in Neuroscience, 2017, Volume 11
[2]
Martina Bočková, Jan Chládek, Pavel Jurák, Josef Halámek, Steven Z. Rapcsak, Marek Baláž, Jan Chrastina, and Ivan Rektor
Journal of Neural Transmission, 2017, Volume 124, Number 7, Page 841

Comments (0)

Please log in or register to comment.
Log in