Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Short-latency afferent inhibition in chronic spinal cord injury

Aaron Z. Bailey / Yiqun P. Mi / Aimee J. Nelson
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/tnsci-2015-0025


Background: Short-latency afferent inhibition (SAI) results when somatosensory afferent input inhibits the corticospinal output from primary motor cortex (M1). The present study examined SAI in the flexor carpi radialis (FCR) muscle in individuals with spinal cord injury (SCI) and uninjured controls. Methods: Short-latency afferent inhibition (SAI) was evoked by stimulating the median nerve at the elbow at intervals of 15, 20 and 25 ms in advance of a transcranial magnetic stimulation (TMS) pulse over M1. SAI was tested with the FCR at rest and also during ~20% of maximum voluntary contraction. Corticospinal output was assessed through measuring both motor thresholds and motor evoked potential (MEP) recruitment curves. The afferent volley was assessed via the N20-P25 amplitude of the somatosensory evoked potential (SEP) and the amplitude of sensory nerve action potentials (SNAP) recorded over the median nerve at the elbow. Results: SAI is reduced in SCI in both the contracted and non-contracted FCR muscle. MEP recruitment curves and thresholds were decreased in SCI only in the active state and not the resting state. N20-P25 amplitude was similar between groups in both the resting and active states although SNAP was significantly reduced in SCI at rest. Conclusions: We conclude that reduced SAI in SCI is likely attributed to neuroplasticity altering the intrinsic M1 circuitry mediating SAI and/or reduced afferent input traversing a direct thalamocortical route to M1. These data provide a new avenue of research aimed at identifying therapeutic approaches to alter SAI to improve upper limb function in individuals with SCI.

Keywords: Afferent pathways; Motor evoked potential; Spinal cord injury; Cervical spinal cord; Short-latency afferent inhibition; Corticospinal tracts


  • [1] Tokimura H., Di Lazzaro V., Tokimura Y., Oliviero A., Profice P., Insola A., et al., Short latency inhibition of human hand motor cortex by somatosensory input from the hand, J. Physiol., 2000, 523, 503-513 Google Scholar

  • [2] Chen R., Corwell B., Hallett M., Modulation of motor cortex excitability by median nerve and digit stimulation, Exp. Brain Res., 1999, 129, 77- 86 Google Scholar

  • [3] Fischer M., Orth M., Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS, Brain Stimul., 2011, 4, 202-209 Web of ScienceGoogle Scholar

  • [4] Mikulis D.J., Jurkiewicz M.T., McIlroy W.E., Staines W.R., Rickards L., Kalsi-Ryan S., et al., Adaptation in the motor cortex following cervical spinal cord injury, Neurology, 2002, 58, 794-801 Google Scholar

  • [5] Jurkiewicz M.T., Crawley A.P., Verrier M.C., Fehlings M.G., Mikulis D.J., Somatosensory cortical atrophy after spinal cord injury: a voxelbased morphometry study, Neurology, 2006, 66, 762-764 Google Scholar

  • [6] Pandya D.N., Kuypers H.G., Cortico-cortical connections in the rhesus monkey, Brain Res., 1969, 13, 13-36 CrossrefGoogle Scholar

  • [7] Jones E.G., Powell T.P., Connexions of the somatic sensory cortex of the rhesus monkey, I. Ipsilateral cortical connexions, Brain, 1969, 92, 477-502 Google Scholar

  • [8] Roy F.D., Yang J.F., Gorassini M.A., Roy F.D., Yang J.F., Gorassini M.A., Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury, J. Neurophysiol., 2010, 103, 2222-2233. Web of ScienceGoogle Scholar

  • [9] Voller B., St Clair Gibson A., Dambrosia J., Pirio Richardson S., Lomarev M., Dang N., et al., Short-latency afferent inhibition during selective finger movement, Exp. Brain Res., 2006, 169, 226-231 Web of ScienceGoogle Scholar

  • [10] Asmussen M.J., Zapallow C.M., Jacobs M.F., Lee K.G.H., Tsang P., Nelson A.J., Modulation of short-latency afferent inhibition depends on digit and task-relevance, PLoS One, 2014, 9, e104807 Google Scholar

  • [11] Asmussen M.J., Jacobs M.F., Lee K.G.H., Zapallow C.M., Nelson A.J., Short-latency afferent inhibition modulation during finger movement, PLoS One, 2013, 8, e60496 Google Scholar

  • [12] Di Lazzaro V., Profice P., Pilato F., Capone F., Ranieri F., Florio L., et al., The level of cortical afferent inhibition in acute stroke correlates with long-term functional recovery in humans, Stroke, 2012, 43, 250-252 Web of ScienceGoogle Scholar

  • [13] Bertolasi L., Priori A., Tinazzi M., Bertasi V., Rothwell J.C., Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans, J. Physiol., 1998, 511, 947-956 Google Scholar

  • [14] Edwards D.J., Cortes M., Thickbroom G.W., Rykman A., Pascual-Leone A., Volpe B.T., Preserved corticospinal conduction without voluntary movement after spinal cord injury, Spinal Cord, 2013, 51, 765-767 Web of ScienceGoogle Scholar

  • [15] Roy F.D., Zewdie E.T., Gorassini M.A., Short-interval intracortical inhibition with incomplete spinal cord injury, Clin. Neurophysiol., 2011, 122, 1387-1395 Web of ScienceGoogle Scholar

  • [16] Davey N.J., Smith H.C., Savic G., Maskill D.W., Ellaway P.H., Frankel H.L., Comparison of input-output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients, Exp. Brain Res., 1999, 127, 382-390 Google Scholar

  • [17] Ni Z., Charab S., Gunraj C., Nelson A.J., Udupa K., Yeh I.-J., et al., Transcranial magnetic stimulation in different current directions activates separate cortical circuits, J. Neurophysiol., 2011, 105, 749- 756 Google Scholar

  • [18] Gandevia S.C., Burke D., Saturation in human somatosensory pathways, Exp. Brain Res., 1984, 54, 582-585 Google Scholar

  • [19] Jurkiewicz M.T., Mikulis D.J., McIlroy W.E., Fehlings M.G., Verrier M.C., Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study, Neurorehabil. Neural Repair, 2007, 21, 527-538 Web of ScienceGoogle Scholar

  • [20] Gott P.S., Karnaze D.S., Fisher M., Assessment of median nerve somatosensory evoked potentials in cerebral ischemia, Stroke, 1990, 21, 1167-1171 CrossrefGoogle Scholar

  • [21] Paulus W., Classen J., Cohen L.G., Large C.H., Di Lazzaro V., Nitsche M., et al., State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation, Brain Stimul., 2008, 1, 151-163 Google Scholar

  • [22] Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, Bull. Math. Biol., 1990, 52, 25-71 CrossrefGoogle Scholar

  • [23] Ziemann U., Lönnecker S., Steinhoff B.J., Paulus W., Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study, Ann. Neurol., 1996, 40, 367- 378 Google Scholar

  • [24] Kimiskidis V.K., Papagiannopoulos S., Sotirakoglou K., Kazis D.A., Kazis A., Mills K.R., Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers, Exp. Brain Res., 2005, 163, 21-31 Google Scholar

  • [25] Mavroudakis N., Caroyer J.M., Brunko E., Zegers de Beyl D., Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation, Electroencephalogr. Clin. Neurophysiol., 1994, 93, 428- 433 Google Scholar

  • [26] Chen R., Samii A., Caños M., Wassermann E.M., Hallett M., Effects of phenytoin on cortical excitability in humans, Neurology, 1997, 49, 881-883 Google Scholar

  • [27] Hains B.C., Black J.A., Waxman S.G., Primary motor neurons fail to up-regulate voltage-gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injury, J. Neurosci. Res., 2002, 70, 546-552 Google Scholar

  • [28] Wang Y., Pillai S., Wolpaw J.R., Chen X.Y., Motor learning changes GABAergic terminals on spinal motoneurons in normal rats, Eur. J. Neurosci., 2006, 23, 141-150 Google Scholar

  • [29] Boroojerdi B., Battaglia F., Muellbacher W., Cohen L.G., Mechanisms influencing stimulus-response properties of the human corticospinal system, Clin. Neurophysiol., 2001, 112, 931-937 Google Scholar

  • [30] Schönle P.W., Isenberg C., Crozier T.A., Dressler D., Machetanz J., Conrad B., Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine, Neurosci. Lett., 1989, 101, 321-324 Google Scholar

  • [31] Ilić T.V., Meintzschel F., Cleff U., Ruge D., Kessler K.R., Ziemann U., Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity, J. Physiol., 2002, 545, 153-167 Google Scholar

  • [32] Kimiskidis V.K., Papagiannopoulos S., Kazis D.A., Sotirakoglou K., Vasiliadis G., Zara F., et al., Lorazepam-induced effects on silent period and corticomotor excitability, Exp. Brain Res., 2006, 173, 603-611 Google Scholar

  • [33] Mohammadi B., Krampfl K., Petri S., Bogdanova D., Kossev A., Bufler J., et al., Selective and nonselective benzodiazepine agonists have different effects on motor cortex excitability, Muscle Nerve, 2006, 33, 778-784 CrossrefGoogle Scholar

  • [34] Inghilleri M., Berardelli A., Marchetti P., Manfredi M., Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans, Exp. Brain Res., 1996, 109, 467-472 Google Scholar

  • [35] Di Lazzaro V., Pilato F., Dileone M., Tonali P.A., Ziemann U., Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition, J. Physiol., 2005, 569, 315-323 Google Scholar

  • [36] Di Lazzaro V., Oliviero A., Tonali P.A., Marra C., Daniele A., Profice P., et al., Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation, Neurology, 2002, 59, 392-397 Google Scholar

  • [37] Di Lazzaro V., Oliviero A., Pilato F., Saturno E., Dileone M., Marra C., et al., Neurophysiological predictors of long term response to AChE inhibitors in AD patients, J. Neurol. Neurosurg. Psychiatry, 2005, 76, 1064-1069 Google Scholar

  • [38] Voller B., St Clair Gibson A., Lomarev M., Kanchana S., Dambrosia J., Dang N., et al., Long-latency afferent inhibition during selective finger movement, J. Neurophysiol., 2005, 94, 1115-1119 Google Scholar

About the article

Received: 2015-09-18

Accepted: 2015-11-06

Published Online: 2015-11-26

Citation Information: Translational Neuroscience, Volume 6, Issue 1, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0025.

Export Citation

©2015 Aaron Z. Bailey et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Claudia V. Turco, Jenin El-Sayes, Mitchell B. Locke, Robert Chen, Steven Baker, and Aimee J. Nelson
The Journal of Physiology, 2018
Claudia Turco, Mitchell Locke, Jenin El-Sayes, Mark Tommerdahl, and Aimee Nelson
Brain Sciences, 2018, Volume 8, Number 4, Page 64
Yuming Lei and Monica A. Perez
Journal of Neurophysiology, 2018, Volume 119, Number 1, Page 251
Recep A. Ozdemir and Monica A. Perez
Journal of Neurophysiology, 2018, Volume 119, Number 1, Page 134
Claudia V. Turco, Jenin El-Sayes, Mitchell J. Savoie, Hunter J. Fassett, Mitchell B. Locke, and Aimee J. Nelson
Brain Stimulation, 2017

Comments (0)

Please log in or register to comment.
Log in