Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Characterization of glial-restricted precursors from rhesus monkey embryonic stem cells

Hongwei Chen
  • Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Stem Cell and Brain Research Institute, INSERM U846, Bron 69675, France
  • Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Mao
  • Laboratory of Primate Recognition Neurosciences, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shufen Wang
  • Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bin Li
  • Laboratory of Reproductive and Developmental Biology, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jinhuan Wang
  • Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian Li
  • Central Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuanye Ma
  • Laboratory of Primate Recognition Neurosciences, Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-27 | DOI: https://doi.org/10.1515/tnsci-2015-0026

Abstract

Glial-restricted precursor (GRP) cells, the earliest glial progenitors for both astrocytes and oligodendrocytes, have been derived from embryos and embryonic stem cells (ESC) in rodents. However, knowledge regarding the equivalent cell type in primates is limited due to restrictions imposed by ethics and resources. Here we report successful derivation and characterization of primate GRP cells from rhesus monkey ESC. The purified monkey GRP cells were A2B5-positive and FGF2-dependent for survival and proliferation. The differentiation assays indicated that they were tri-potential in vitro and bi-potential in vivo. These newly purified GRP cells will help to facilitate understanding of the molecular mechanism of glial development in primates as well as provide a source of therapeutic donor cells for use in neuroregenerative medicine.

Keywords: Differentiation; Glial-restricted precursor (GRP); Rhesus monkey; Embryonic stem cell (ESC)

References

  • [1] Copp A.J., Greene N.D., Murdoch J.N., The genetic basis of mammalian neurulation, Nat. Rev. Genet., 2003, 4, 784-793 CrossrefGoogle Scholar

  • [2] Rao M.S., Mayer-Pröschel M., Glial-restricted precursors are derived from multipotent neuroepithelial stem cells, Dev. Biol., 1997, 188, 48- 63 Google Scholar

  • [3] Rao M.S., Noble M., Mayer-Pröschel M., A tripotential glial precursor cell is present in the developing spinal cord, Proc. Natl. Acad. Sci. USA, 1998, 95, 3996-4001 Google Scholar

  • [4] Mujtaba T., Piper D.R., Kalyani A., Groves A.K., Lucero M.T., Rao M.S., Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells, Dev. Biol., 1999, 214, 113- 127 Google Scholar

  • [5] Herrera J., Yang H., Zhang S.C., Pröschel C., Tresco P., Duncan I.D., et al., Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo, Exp. Neurol., 2001, 171, 11-21 Google Scholar

  • [6] Gregori N., Pröschel C., Noble M., Mayer-Pröschel M., The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function, J. Neurosci., 2002, 22, 248-256 Google Scholar

  • [7] Cao Q., Xu X.M., Devries W.H., Enzmann G.U., Ping P., Tsoulfas P., et al., Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells, J. Neurosci., 2005, 25, 6947-6957 CrossrefGoogle Scholar

  • [8] Nout Y.S., Culp E., Schmidt M.H., Tovar C.A., Pröschel C., Mayer- Pröschel M., et al., Glial-restricted precursor cell transplant with cyclic adenosine monophosphate improved some autonomic functions but resulted in a reduced graft size after spinal cord contusion injury in rats, Exp. Neurol., 2011, 227, 159-171 Web of ScienceGoogle Scholar

  • [9] Hu J.G., Wang X.F., Deng L.X., Liu N.K., Gao X., Chen J.H., et al., Cotransplantation of glial-restricted precursor cells and Schwann cells promotes functional recovery after spinal cord injury, Cell Transplant., 2013, 22, 2219-2236 CrossrefWeb of ScienceGoogle Scholar

  • [10] Fan C., Zheng Y., Cheng X., Qi X., Bu P., Luo X., et al., Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury, Int. J. Biol. Sci., 2013, 9, 78-93 CrossrefWeb of ScienceGoogle Scholar

  • [11] Dietrich J., Noble M., Mayer-Pröschel M., Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells, Glia, 2002, 40, 65-77 Google Scholar

  • [12] Colin C., Baeza N., Tong S., Bouvier C., Quilichini B., Durbec P., et al., In vitro identification and functional characterization of glial precursor cells in human gliomas, Neuropathol. Appl. Neurobiol., 2006, 32, 189- 202 CrossrefGoogle Scholar

  • [13] Evans M.J., Kaufman M.H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, 292, 154-156 Google Scholar

  • [14] Thomson J.A., Kalishman J., Golos T.G., Durning M., Harris C.P., Becker R.A., et al., Isolation of a primate embryonic stem cell line, Proc. Natl. Acad. Sci. USA, 1995, 92, 7844-7848 Google Scholar

  • [15] Chen H., Aksoy I., Gonnot F., Osteil P., Aubry M., Hamela C., et al., Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency, Nat. Commun., 2015, 6, 7095 Web of ScienceCrossrefGoogle Scholar

  • [16] Cai C., Grabel L., Directing the differentiation of embryonic stem cells to neural stem cells, Dev. Dyn., 2007, 236, 3255-3266 Web of ScienceGoogle Scholar

  • [17] Dhara S.K., Stice S.L., Neural differentiation of human embryonic stem cells, J. Cell. Biochem., 2008, 105, 633-640 Google Scholar

  • [18] Chen H., Wei Q., Zhang J., Tan T., Li R., Chen J., Neural lineage development in the rhesus monkey with embryonic stem cells, Transl. Neurosci., 2013, 4, 378-384 Web of ScienceCrossrefGoogle Scholar

  • [19] Wolf D.P., Kuo H.C., Pau K.Y., Lester L., Progress with nonhuman primate embryonic stem cells, Biol. Reprod., 2004, 71, 1766-1771 Google Scholar

  • [20] Kuo H.C., Pau K.Y., Yeoman R.R., Mitalipov S.M., Okano H., Wolf D.P., Differentiation of monkey embryonic stem cells into neural lineages, Biol. Reprod., 2003, 68, 1727-1735 Google Scholar

  • [21] Brustle O., Jones K.N., Learish R.D., Karram K., Choudhary K., Wiestler O.D., et al., Embryonic stem cell-derived glial precursors: a source of myelinating transplants, Science, 1999, 285, 754-756 Google Scholar

  • [22] Noble M., Pröschel C., Mayer-Pröschel M., Getting a GR(i)P on oligodendrocyte development, Dev. Biol., 2004, 265, 33-52 Google Scholar

  • [23] Weissman T., Noctor S.C., Clinton B.K., Honig L.S., Kriegstein A.R., Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration, Cereb. Cortex, 2003, 13, 550-559 CrossrefGoogle Scholar

  • [24] Lee G., Chambers S.M., Tomishima M.J., Studer L., Derivation of neural crest cells from human pluripotent stem cells, Nat. Protoc., 2010, 5, 688-701 CrossrefWeb of ScienceGoogle Scholar

  • [25] Achilleos A., Trainor P.A., Neural crest stem cells: discovery, properties and potential for therapy, Cell Res., 2012, 222, 288-304 Google Scholar

  • [26] Alvarez-Buylla A., Garcia-Verdugo J.M., Tramontin A.D., A unified hypothesis on the lineage of neural stem cells, Nat. Rev. Neurosci., 2001, 2, 287-293 CrossrefGoogle Scholar

  • [27] Delaunay D., Heydon K., Cumano A., Schwab M.H., Thomas J.L., Suter U., et al., Early neuronal and glial fate restriction of embryonic neural stem cells, J. Neurosci., 2008, 28, 2551-2562 CrossrefGoogle Scholar

  • [28] Sauer F.C., Mitosis in the neural tube, J. Comp. Neurol., 1935, 377-405 CrossrefGoogle Scholar

  • [29] Chen H., Wei Q., Zhang J., Xu C., Tan T., Ji, W., Netrin-1 signaling mediates NO-induced glial precursor migration and accumulation, Cell Res., 2010, 20, 238-241 CrossrefGoogle Scholar

About the article

Received: 2015-08-23

Accepted: 2015-11-01

Published Online: 2015-11-27


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, DOI: https://doi.org/10.1515/tnsci-2015-0026.

Export Citation

©2015 Hongwei Chen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in