[1]
Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A et al., Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2), Lancet Neurol 2011, 10, 618-625. PubMedCrossrefGoogle Scholar
[2]
Sehba FA, Pluta RM, Zhang JH, Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury, Mol Neurobiol 2011, 43, 27-40. CrossrefPubMedGoogle Scholar
[3]
van Donkelaar CE, Bakker NA, Veeger NJ, Uyttenboogaart M, Metzemaekers JD, Eshghi O et al., Prediction of outcome after subarachnoid hemorrhage: timing of clinical assessment, J Neurosurg 2017, 126, 52-59. PubMedCrossrefGoogle Scholar
[4]
Suwatcharangkoon S, Meyers E, Falo C, Schmidt JM, Agarwal S, Claassen J et al., Loss of Consciousness at Onset of Subarachnoid Hemorrhage as an Important Marker of Early Brain Injury, JAMA Neurol 2016, 73, 28-35. CrossrefPubMedGoogle Scholar
[5]
Schubert GA, Schilling L, Thome C, Clazosentan, an endothelin receptor antagonist, prevents early hypoperfusion during the acute phase of massive experimental subarachnoid hemorrhage: a laser Doppler flowmetry study in rats, J Neurosurg 2008, 109, 1134-1140. PubMedCrossrefGoogle Scholar
[6]
Seifert V, Loffler BM, Zimmermann M, Roux S, Stolke D, Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma, J Neurosurg 1995, 82, 55-62. CrossrefPubMedGoogle Scholar
[7]
Sercombe R, Dinh YR, Gomis P, Cerebrovascular inflammation following subarachnoid hemorrhage, Jpn J Pharmacol 2002, 88, 227-249. PubMedCrossrefGoogle Scholar
[8]
Cahill J, Calvert JW, Zhang JH, Mechanisms of early brain injury after subarachnoid hemorrhage, J Cereb Blood Flow Metab 2006, 26, 1341-1353. CrossrefPubMedGoogle Scholar
[9]
Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH, Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage, Acta Neurochir Suppl 2011, 110, 43-48. PubMedGoogle Scholar
[10]
Almawi WY, Melemedjian OK, Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids, J Mol Endocrinol 2002, 28, 69-78. PubMedGoogle Scholar
[11]
Yamakawa K, Sasaki T, Tsubaki S, Nakagomi T, Saito I, Takakura K, Effect of high-dose methylprednisolone on vasospasm after subarachnoid hemorrhage, Neurol Med Chir (Tokyo) 1991, 31, 24-31. PubMedCrossrefGoogle Scholar
[12]
Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P, Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage, J Neurosurg 2010, 112, 681-688. CrossrefPubMedGoogle Scholar
[13]
Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC, Minocycline for short-term neuroprotection, Pharmacotherapy 2006, 26, 515-521. PubMedCrossrefGoogle Scholar
[14]
Bahrami F, Morris DL, Pourgholami MH, Tetracyclines: drugs with huge therapeutic potential, Mini Rev Med Chem 2012, 12, 44-52. PubMedCrossrefGoogle Scholar
[15]
Saivin S, Houin G, Clinical pharmacokinetics of doxycycline and minocycline, Clin Pharmacokinet 1988, 15, 355-366. PubMedCrossrefGoogle Scholar
[16]
Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W, Minocycline as a neuroprotective agent, Neuroscientist 2005, 11, 308-322. PubMedCrossrefGoogle Scholar
[17]
Bederson JB, Germano IM, Guarino L, Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat, Stroke 1995, 26, 1086-1091. CrossrefGoogle Scholar
[18]
Lilla N, Hartmann J, Koehler S, Ernestus RI, Westermaier T, Early NO-donor treatment improves acute perfusion deficit and brain damage after experimental subarachnoid hemorrhage in rats, J Neurol Sci 2016, 370, 312-319. CrossrefPubMedGoogle Scholar
[19]
Garcia JH, Wagner S, Liu KF, Hu XJ, Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation, Stroke 1995, 26, 627-634. PubMedCrossrefGoogle Scholar
[20]
Sugawara T, Ayer R, Jadhav V, Zhang JH, A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model, J Neurosci Methods 2008, 167, 327-334. CrossrefPubMedGoogle Scholar
[21]
Paxinos G, Watson C, The Rat Brain in stereotaxic Coordinates, 2005.
[22]
Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA, Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models, Neurosurgery 2003, 52, 165-175. Google Scholar
[23]
Veelken JA, Laing RJ, Jakubowski J, The Sheffield model of subarachnoid hemorrhage in rats, Stroke 1995, 26, 1279-1283. CrossrefPubMedGoogle Scholar
[24]
Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K, Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats, J Neurosurg 2009, 110, 996-1002. PubMedCrossrefGoogle Scholar
[25]
Mistry AM, Mistry EA, Ganesh KN, Froehler MT, Fusco MR, Chitale RV, Corticosteroids in the Management of Hyponatremia, Hypovolemia, and Vasospasm in Subarachnoid Hemorrhage: A Meta-Analysis, Cerebrovasc Dis 2016, 42, 263-271. PubMedCrossrefGoogle Scholar
[26]
Nakagawa I, Hironaka Y, Nishimura F, Takeshima Y, Matsuda R, Yamada S et al., Early inhibition of natriuresis suppresses symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage, Cerebrovasc Dis 2013, 35, 131-137. CrossrefPubMedGoogle Scholar
[27]
Moro N, Katayama Y, Kojima J, Mori T, Kawamata T, Prophylactic management of excessive natriuresis with hydrocortisone for efficient hypervolemic therapy after subarachnoid hemorrhage, Stroke 2003, 34, 2807-2811. PubMedCrossrefGoogle Scholar
[28]
Sehba FA, Bederson JB, Mechanisms of acute brain injury after subarachnoid hemorrhage, Neurol Res 2006, 28, 381-398. PubMedCrossrefGoogle Scholar
[29]
Sehba FA, Mostafa G, Knopman J, Friedrich VJ, Bederson JB, Acute alterations in microvascular basal lamina after subarachnoid hemorrhage, J Neurosurg 2004, 101, 633-640. PubMedCrossrefGoogle Scholar
[30]
Chaichana KL, Pradilla G, Huang J, Tamargo RJ, Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage, World Neurosurg 2010, 73, 22-41. PubMedCrossrefGoogle Scholar
[31]
Sabri M, Ai J, Lakovic K, Macdonald RL, Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage, Acta Neurochir Suppl 2013, 115, 185-192. PubMedGoogle Scholar
[32]
Schweingruber N, Reichardt SD, Luhder F, Reichardt HM, Mechanisms of glucocorticoids in the control of neuroinflammation, J Neuroendocrinol 2012, 24, 174-182. CrossrefPubMedGoogle Scholar
[33]
Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS et al., A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study, N Engl J Med 1990, 322, 1405-1411. CrossrefPubMedGoogle Scholar
[34]
Fox JL, Yasargil MG, The relief of intracranial vasospasm: an experimental study with methylprednisolone and cortisol, Surg Neurol 1975, 3, 214-218. PubMedGoogle Scholar
[35]
Chen D, Nishizawa S, Yokota N, Ohta S, Yokoyama T, Namba H, High-dose methylprednisolone prevents vasospasm after subarachnoid hemorrhage through inhibition of protein kinase C activation, Neurol Res 2002, 24, 215-222. CrossrefPubMedGoogle Scholar
[36]
Chyatte D, Fode NC, Nichols DA, Sundt TMJ, Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage, Neurosurgery 1987, 21, 157-160. PubMedCrossrefGoogle Scholar
[37]
Chyatte D, Rusch N, Sundt TMJ, Prevention of chronic experimental cerebral vasospasm with ibuprofen and high-dose methylprednisolone, J Neurosurg 1983, 59, 925-932. PubMedCrossrefGoogle Scholar
[38]
Feigin VL, Anderson N, Rinkel GJ, Algra A, van Gijn J, Bennett DA, Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage, Cochrane Database Syst Rev 2005, CD004583. PubMed
[39]
Czorlich P, Sauvigny T, Ricklefs F, Abboud T, Nierhaus A, Vettorazzi E et al., Impact of dexamethasone in patients with aneurysmal subarachnoid haemorrhage, Eur J Neurol 2017, 24, 645-651. PubMedCrossrefGoogle Scholar
[40]
Garrido-Mesa N, Zarzuelo A, Galvez J, Minocycline: far beyond an antibiotic, Br J Pharmacol 2013, 169, 337-352. CrossrefPubMedGoogle Scholar
[41]
Mori K, Maeda M, Miyazaki M, Iwase H, Misery perfusion caused by cerebral hypothermia improved by vasopressor administration, Neurol Res 1999, 21, 585-592. CrossrefPubMedGoogle Scholar
[42]
Morimoto N, Shimazawa M, Yamashima T, Nagai H, Hara H, Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage, Brain Res 2005, 1044, 8-15. PubMedCrossrefGoogle Scholar
[43]
Guo ZD, Wu HT, Sun XC, Zhang XD, Zhang JH, Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats, Acta Neurochir Suppl 2011, 110, 71-74. PubMedGoogle Scholar
[44]
Dalm D, Palm GJ, Aleksandrov A, Simonson T, Hinrichs W, Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phospholipase A2, J Mol Biol 2010, 398, 83-96.CrossrefPubMedGoogle Scholar
[45]
Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA et al., Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice, J Cereb Blood Flow Metab 2005, 25, 460-467. PubMedCrossrefGoogle Scholar
[46]
Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, Shin HY et al., Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice, Neurosci Lett 2006, 398, 195-200.PubMedCrossrefGoogle Scholar
[47]
Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J, Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia, J Neurosci 2001, 21, 2580-2588. CrossrefPubMedGoogle Scholar
[48]
Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW, Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis, Brain 2002, 125, 1297-1308. PubMedCrossrefGoogle Scholar
[49]
Sehba FA, Hou J, Pluta RM, Zhang JH, The importance of early brain injury after subarachnoid hemorrhage, Prog. Neurobiol 2012, 97, 14-37. CrossrefPubMedGoogle Scholar
[50]
Caner B, Hou J, Altay O, Fujii M, Zhang JH, Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage, J Neurochem 2012, 123 Suppl, 12-21. CrossrefPubMedGoogle Scholar
[51]
Ostrowski RP, Colohan AR, Zhang JH, Molecular mechanisms of early brain injury after subarachnoid hemorrhage, Neurol Res 2006, 28, 399-414. CrossrefPubMedGoogle Scholar
[52]
Miller BA, Turan N, Chau M, Pradilla G, Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage, Biomed Res Int 2014, 2014, 384342.
[53]
Lombardi D, Gaetani P, Marzatico F, Cafe C, Rodriguez, Effect of high-dose methylprednisolone on anti-oxidant enzymes after experimental SAH, J Neurol Sci 1992, 111, 13-19. CrossrefGoogle Scholar
[54]
Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G et al., Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke, BMC Neurosci 2009, 10:126, -10. PubMedCrossrefGoogle Scholar
[55]
Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K et al., Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats, J Neurotrauma 2011, 28, 2503-2512. CrossrefPubMedGoogle Scholar
[56]
Li J, Chen J, Mo H, Qian C, Yan F, Gu C et al., Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage, Mol Neurobiol 2016, 53, 2668-2678. PubMedCrossrefGoogle Scholar
Comments (0)