[1]
Humphreys GW, Price CJ, Riddoch MJ. From objects to names: A cognitive neuroscience approach. Psychol Res. 1999;62(2-3):118-30. CrossrefPubMedGoogle Scholar
[2]
Kiefer M, Pulvermüller F. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex. 2012;48:805-25. CrossrefGoogle Scholar
[3]
Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, editors. Organization of memory. New York: Academic Press; 1972. p. 381-403. Google Scholar
[4]
Anderson JR. Arguments concerning representations for mental imagery. Psychol Rev. 1978;85:249-77. CrossrefGoogle Scholar
[5]
Tyler LK, Moss HE. Towards a distributed account of conceptual knowledge. Trends Cogn Sci. 2001;5:244-52. CrossrefPubMedGoogle Scholar
[6]
Rogers TT, Lambon Ralph MA, Garrard P, Bozeat S, McClelland JL, Hodges JR, et al. Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychol Rev. 2004;111(1):205-35. PubMedCrossrefGoogle Scholar
[7]
McClelland JL, Rogers TT. The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci. 2003;4(4):310-22. CrossrefPubMedGoogle Scholar
[8]
Mahon BZ, Caramazza A. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J Physiol (Paris). 2008;102:59-70. CrossrefGoogle Scholar
[9]
Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617-45. CrossrefPubMedGoogle Scholar
[10]
Dijkstra K, Post L. Mechanisms of embodiment. Front Psychol. 2015;6. Google Scholar
[11]
Kiefer M, Spitzer M. The limits of a distributed account of conceptual knowledge. Trends Cogn Sci. 2001;5(11):469-71. PubMedCrossrefGoogle Scholar
[12]
Martin A. The representation of object concepts in the brain. Annu Rev Psychol. 2007;58:25-45. CrossrefPubMedGoogle Scholar
[13]
Hauk O, Johnsrude I, Pulvermüller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 2004;41(2):301-7. PubMedCrossrefGoogle Scholar
[14]
Hauk O, Pulvermüller F. Neurophysiological distinction of action words in the fronto-central cortex. Hum Brain Mapp. 2004;21(3):191-201. CrossrefPubMedGoogle Scholar
[15]
Kiefer M. Repetition priming modulates category-related effects on event-related potentials: Further evidence for multiple cortical semantic systems. J Cogn Neurosci. 2005;17(2):199-211. PubMedCrossrefGoogle Scholar
[16]
Pulvermüller F, Hauk O. Category-specific conceptual processing of color and form in left fronto-temporal cortex. Cereb Cortex. 2006;16(8):1193-201. CrossrefPubMedGoogle Scholar
[17]
Trumpp NM, Kliese D, Hoenig K, Haarmaier T, Kiefer M. Losing the sound of concepts: Damage to auditory association cortex impairs the processing of sound-related concepts. Cortex. 2013;49:474-86. PubMedCrossrefGoogle Scholar
[18]
Barsalou LW, Santos A, Simmons WK, Wilson CD. Language and simulation in conceptual processing. In: De Vega M, Glenberg AM, Graesser AC, editors. Symbols, embodiment, and meaning. Oxford: Oxford University Press; 2008. Google Scholar
[19]
Pulvermüller F. Words in the brain’s language. Behav Brain Sci. 1999;22:253-336. CrossrefPubMedGoogle Scholar
[20]
Kemmerer D. Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychon Bull Rev. 2015;22(4):1068-75. CrossrefPubMedGoogle Scholar
[21]
De Grauwe S, Willems RM, Rueschemeyer SA, Lemhofer K, Schriefers H. Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia. 2014;56:334-49. CrossrefPubMedGoogle Scholar
[22]
Kiefer M, Sim E-J, Herrnberger B, Grothe J, Hoenig K. The sound of concepts: Four markers for a link between auditory and conceptual brain systems. J Neurosci. 2008;28(47):12224–30. PubMedCrossrefGoogle Scholar
[23]
Kiefer M, Barsalou LW. Grounding the human conceptual system in perception, action, and internal states. In: Prinz W, Beisert M, Herwig A, editors. Action science: Foundations of an emerging discipline. Cambridge: MIT Press; 2013. p. 381-407. Google Scholar
[24]
Meteyard L, Cuadrado SR, Bahrami B, Vigliocco G. Coming of age: A review of embodiment and the neuroscience of semantics. Cortex. 2012;48(7):788-804. PubMedCrossrefGoogle Scholar
[25]
Pulvermüller F. Brain reflections of words and their meaning. Trends Cogn Sci. 2001;5(12):517-24. CrossrefPubMedGoogle Scholar
[26]
Gallese V, Lakoff G. The brain’s concepts: The role of the sensorimotor system in conceptual knowledge. Cogn Neuropsychol. 2005;22(3-4):455-79. CrossrefGoogle Scholar
[27]
Barsalou LW. Perceptual symbol systems. Behav Brain Sci. 1999;22(4):577-609; discussion 10-60. CrossrefPubMedGoogle Scholar
[28]
Simmons WK, Barsalou LW. The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cogn Neuropsychol. 2003;20:451-86. PubMedCrossrefGoogle Scholar
[29]
Farah MJ, McClelland JL. A computational model of semantic memory impairment: Modality specificity and emergent category specificity. J Exp Psychol. 1991;120:339-57. CrossrefGoogle Scholar
[30]
Garagnani M, Pulvermüller F. Conceptual grounding of language in action and perception: A neurocomputational model of the emergence of category specificity and semantic hubs. Eur J Neurosci. 2016;43(6):721-37. PMCID: 4982106. CrossrefPubMedGoogle Scholar
[31]
Pulvermüller F. Neurobiological mechanisms for semantic feature extraction and conceptual flexibility. Top Cogn Sci. 2018;10(3):590-620. CrossrefPubMedGoogle Scholar
[32]
Solomon KO, Barsalou LW. Perceptual simulation in property verification. Mem Cognition. 2004;32:244-59. CrossrefGoogle Scholar
[33]
van Dam WO, van Dijk M, Bekkering H, Rueschemeyer SA. Flexibility in embodied lexical-semantic representations. Hum Brain Mapp. 2012;33(10):2322-33. PubMedCrossrefGoogle Scholar
[34]
Carota F, Moseley R, Pulvermüller F. Body-part-specific representations of semantic noun categories. J Cogn Neurosci. 2012;24(6):1492-509. PubMedCrossrefGoogle Scholar
[35]
Dehaene S. Electrophysiological evidence for category-specific word processing in the normal human brain. NeuroReport. 1995;6:2153-7. PubMedCrossrefGoogle Scholar
[36]
Trumpp NM, Traub F, Kiefer M. Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information. PLoS ONE 2013;8(5); doi:10.1371/journal.pone.0065910. PubMedGoogle Scholar
[37]
Kiefer M, Sim E-J, Liebich S, Hauk O, Tanaka JW. Experience-dependent plasticity of conceptual representations in human sensorimotor areas. J Cogn Neurosci. 2007;19(3):525-42. CrossrefPubMedGoogle Scholar
[38]
Kemmerer D, Rudrauf D, Manzel K, Tranel D. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex. 2012;48(7):826-48. PMCID: 3965329. PubMedCrossrefGoogle Scholar
[39]
Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, Rizzolatti G. Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cogn Brain Res. 2005;24(3):355-63. CrossrefGoogle Scholar
[40]
Pulvermüller F, Hauk O, Nikulin VV, Ilmoniemi RJ. Functional links between motor and language systems. Eur J Neurosci. 2005;21(3):793-7. CrossrefPubMedGoogle Scholar
[41]
Collins AM, Quillian MR. Retrieval time from semantic memory. J Verb Learn Verb Behav. 1969;8:240-7. CrossrefGoogle Scholar
[42]
Quillian MR. The teachable language comprehender. Communications of the ACM. 1969;12:459-76. CrossrefGoogle Scholar
[43]
Barsalou LW. Context-independent and context-dependent information in concepts. Mem Cognition. 1982;10:82-93. CrossrefGoogle Scholar
[44]
Barclay JR, Bransford JD, Franks JJ, McCarrell NS, Nitsch KE. Comprehension and semantic flexibility. J Verb Learn Verb Behav. 1974;13:471-81. CrossrefGoogle Scholar
[45]
Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. The neural and computational bases of semantic cognition. Nat Rev Neurosci. 2017;18(1):42-55. PubMedCrossrefGoogle Scholar
[46]
Hoenig K, Sim E-J, Bochev V, Herrnberger B, Kiefer M. Conceptual flexibility in the human brain: Dynamic recruitment of semantic maps from visual, motion and motor-related areas. J Cogn Neurosci. 2008;20(10):1799-814. CrossrefGoogle Scholar
[47]
Aravena P, Courson M, Frak V, Cheylus A, Paulignan Y, Deprez V, et al. Action relevance in linguistic context drives word-induced motor activity. Front Hum Neurosci. 2014;8:163. PMCID: 3978346. PubMedGoogle Scholar
[48]
Sato M, Mengarelli M, Riggio L, Gallese V, Buccino G. Task related modulation of the motor system during language processing. Brain Lang. 2008;105(2):83-90. CrossrefPubMedGoogle Scholar
[49]
Papeo L, Vallesi A, Isaja A, Rumiati RI. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex. PloS one. 2009;4(2):e4508. PMCID: 2643000. PubMedCrossrefGoogle Scholar
[50]
Preissl H, Pulvermüller F, Lutzenberger W, Birbaumer N. Evoked potentials distinguish between nouns and verbs. Neurosci Lett. 1995;197(1):81-3. PubMedCrossrefGoogle Scholar
[51]
Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, et al. The neural correlates of verb and noun processing. A PET study. Brain. 1999;122(Pt 12):2337-44. Google Scholar
[52]
Shapiro KA, Moo LR, Caramazza A. Cortical signatures of noun and verb production. Proc Natl Acad Sci USA. 2006;103(5):1644-9. PMCID: 1360518. CrossrefGoogle Scholar
[53]
Setti A, Caramelli N, Borghi AM. Conceptual information about size of objects in nouns. Eur J Cogn Psychol. 2009;21(7):1022-44. CrossrefGoogle Scholar
[54]
Glenberg AM, Gallese V. Action-based language: A theory of language acquisition, comprehension, and production. Cortex. 2012;48(7):905-22. CrossrefGoogle Scholar
[55]
Chao LL, Martin A. Representation of manipulable man-made objects in the dorsal stream. NeuroImage. 2000;12(4):478-84. PubMedCrossrefGoogle Scholar
[56]
Popp M, Trumpp NM, Kiefer M. Feature-specific event-related potential effects to action- and sound-related verbs during visual word recognition. Front Hum Neurosci. 2016;10:637. PMCID: 5156699. PubMedGoogle Scholar
[57]
Rueschemeyer SA, van Rooij D, Lindemann O, Willems RM, Bekkering H. The function of words: Distinct neural correlates for words denoting differently manipulable objects. J Cogn Neurosci. 2010;22(8):184451. Google Scholar
[58]
Kiefer M, Trumpp NM, Herrnberger B, Sim E-J, Hoenig K, Pulvermüller F. Dissociating the representation of action- and sound-related concepts in middle temporal cortex. Brain Lang. 2012;122(2):120-5. CrossrefPubMedGoogle Scholar
[59]
Bocanegra Y, Garcia AM, Pineda D, Buritica O, Villegas A, Lopera F, et al. Syntax, action verbs, action semantics, and object semantics in Parkinson’s disease: Dissociability, progression, and executive influences. Cortex. 2015;69:237-54. PubMedCrossrefGoogle Scholar
[60]
Cardona JF, Gershanik O, Gelormini-Lezama C, Houck AL, Cardona S, Kargieman L, et al. Action-verb processing in Parkinson’s disease: New pathways for motor-language coupling. Brain Struct Funct. 2013;218(6):1355-73. PubMedCrossrefGoogle Scholar
[61]
Bedny M, Caramazza A, Pascual-Leone A, Saxe R. Typical neural representations of action verbs develop without vision. Cereb Cortex. 2012;22(2):286-93. PubMedCrossrefGoogle Scholar
[62]
Pulvermüller F, Harle M, Hummel F. Walking or talking? Behavioral and neurophysiological correlates of action verb processing. Brain Lang. 2001;78(2):143-68. CrossrefPubMedGoogle Scholar
[63]
Trumpp NM, Traub F, Pulvermüller F, Kiefer M. Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming. J Cogn Neurosci. 2014;26(2):35264. Google Scholar
[64]
Henson RN. Neuroimaging studies of priming. Prog Neurobiol. 2003;70(1):53-81. CrossrefPubMedGoogle Scholar
[65]
Dehaene S, Naccache L, Cohen L, Le Bihan D, Mangin J-F, Poline J-B, et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci. 2001;4:752-8. CrossrefPubMedGoogle Scholar
[66]
Henson R, Shallice T, Dolan R. Neuroimaging evidence for dissociable forms of repetition priming. Science. 2000;287(5456):1269-72. PubMedCrossrefGoogle Scholar
[67]
Miller EK, Li L, Desimone R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science. 1991;254(5036):1377-9. CrossrefPubMedGoogle Scholar
[68]
Buchsbaum BR, D’Esposito M. Repetition suppression and reactivation in auditory-verbal short-term recognition memory. Cereb Cortex. 2009;19(6):1474-85. PMCID: 2677654. PubMedCrossrefGoogle Scholar
[69]
Segaert K, Weber K, de Lange FP, Petersson KM, Hagoort P. The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia. 2013;51(1):59-66. PubMedCrossrefGoogle Scholar
[70]
Pulvermüller F, Fadiga L. Active perception: Sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci. 2010;11(5):351-60. PubMedCrossrefGoogle Scholar
[71]
Willems RM, Toni I, Hagoort P, Casasanto D. Neural dissociations between action verb understanding and motor imagery. J Cogn Neurosci. 2010;22(10):2387-400. CrossrefPubMedGoogle Scholar
[72]
Klepp A, Niccolai V, Sieksmeyer J, Arnzen S, Indefrey P, Schnitzler A, et al. Body-part specific interactions of action verb processing with motor behaviour. Behavioural brain research. 2017;328:149-58. PubMedCrossrefGoogle Scholar
[73]
Raposo A, Moss HE, Stamatakis EA, Tyler LK. Repetition suppression and semantic enhancement: an investigation of the neural correlates of priming. Neuropsychologia. 2006;44(12):2284-95. CrossrefPubMedGoogle Scholar
[74]
Wagner AD, Paré-Blagoev EJ, Clark J, Poldrack RA. Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron. 2001;31:329-38. PubMedCrossrefGoogle Scholar
[75]
Buckner RL, Koutstaal W, Schacter DL, Rosen BR. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain. 2000;123:620-40. PubMedCrossrefGoogle Scholar
[76]
Wagner AD, Koutstaal W, Maril A, Schacter DL, Buckner RL. Task-specific repetition priming in left inferior prefrontal cortex. Cereb Cortex. 2000;10(12):1176-84. PubMedCrossrefGoogle Scholar
[77]
Machery E. Concept empiricism: A methodological critique. Cognition. 2007;104:19-46. CrossrefPubMedGoogle Scholar
[78]
Johansson RS, Westling G, Backstrom A, Flanagan JR. Eye-hand coordination in object manipulation. J Neurosci. 2001;21(17):691732. Google Scholar
[79]
Dale AM. Optimal experimental design for event-related fMRI. Hum Brain Mapp. 1999;8(2-3):109-14. CrossrefPubMedGoogle Scholar
[80]
Trumpp NM, Kiefer M. Functional reorganization of the conceptual brain system after deafness in early childhood. PloS one. 2018;13(7):e0198894. PMCID: 6033386. PubMedCrossrefGoogle Scholar
[81]
Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. 2016;113(28):7900-5. PMCID: 4948312. CrossrefGoogle Scholar
[82]
Simmons WK, Ramjee V, Beauchamp MS, McRae K, Martin A, Barsalou LW. A common neural substrate for perceiving and knowing about color. Neuropsychologia. 2007;45(12):2802-10. PMCID: 3596878. CrossrefPubMedGoogle Scholar
[83]
Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage. 2007;36(3):511-21. PubMedCrossrefGoogle Scholar
[84]
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19(12):2767-96. CrossrefPubMedGoogle Scholar
[85]
Kotz SA, Cappa SF, von Cramon DY, Friederici AD. Modulation of the lexical-semantic network by auditory semantic priming: An event-related functional MRI study. NeuroImage. 2002;17(4):1761-72. PubMedCrossrefGoogle Scholar
[86]
Rossell SL, Price CJ, Nobre AC. The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia. 2003;41(5):550-64. CrossrefPubMedGoogle Scholar
[87]
Rissman J, Eliassen JC, Blumstein SE. An event-related fMRI investigation of implicit semantic priming. J Cogn Neurosci. 2003;15(8):1160-75. CrossrefPubMedGoogle Scholar
[88]
Kiefer M. Perceptual and semantic sources of category-specific effects in object categorization: Event-related potentials during picture and word categorization. Mem Cognition. 2001;29(1):100-16. CrossrefGoogle Scholar
[89]
Neely JH, Keefe DE, Ross KL. Semantic priming in the lexical decision task: Roles of prospective prime-generated expectancies and retrospective semantic matching. J Exp Psychol: Learn. 1989;15:100319. Google Scholar
[90]
Lewis JW. Audio-visual perception of everyday natural objects— hemodynamic studies in humans. In: Naumer MJ, Kaiser J, editors. Multisensory object perception in the primate brain. Heidelberg: Springer; 2010. p. 155-90. Google Scholar
[91]
Rees G, Friston K, Koch C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci. 2000;3(7):716-23. CrossrefPubMedGoogle Scholar
[92]
Xu J, Wang J, Fan L, Li H, Zhang W, Hu Q, et al. Tractography-based parcellation of the human middle temporal gyrus. Sci Rep. 2015;5:18883. PMCID: 4686935. PubMedGoogle Scholar
[93]
Grisoni L, Miller TM, Pulvermüller F. Neural correlates of semantic prediction and resolution in sentence processing. J Neurosci. 2017;37(18):4848-58. CrossrefPubMedGoogle Scholar
[94]
Tranel D, Martin C, Damasio H, Grabowski TJ, Hichwa R. Effects of noun-verb homonymy on the neural correlates of naming concrete entities and actions. Brain Lang. 2005;92(3):288-99. PubMedCrossrefGoogle Scholar
[95]
Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R. Concepts are more than percepts: The case of action verbs. J Neurosci. 2008;28(44):11347-53. PubMedCrossrefGoogle Scholar
[96]
Schomers MR, Pulvermüller F. Is the sensorimotor cortex relevant for speech perception and understanding? An integrative review. Front Hum Neurosci. 2016;10.
[97]
Carota F, Moseley R, Pulvermüller F. Body-part-specific representations of semantic noun categories. J Cogn Neurosci. 2012;24(6):1492-509. PubMedCrossrefGoogle Scholar
[98]
Arsenault JS, Buchsbaum BR. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception. Psychonom Bull Rev. 2016;23(4):1231-40. CrossrefGoogle Scholar
[99]
Lemaitre G, Pyles JA, Halpern AR, Navolio N, Lehet M, Heller LM. Who’s that knocking at my door? Neural bases of sound source identification. Cereb Cortex. 2018;28(3):805-18. PubMedCrossrefGoogle Scholar
[100]
Rizzolatti G, Fogassi L, Gallese V. Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol. 2002;12(2):149-54. CrossrefPubMedGoogle Scholar
[101]
Kemmerer D, Castillo JG, Talavage T, Patterson S, Wiley C. Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI. Brain Lang. 2008;107(1):16-43. PubMedCrossrefGoogle Scholar
[102]
Boulenger V, Hauk O, Pulvermüller F. Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cereb Cortex. 2009;19(8):1905-14. PubMedCrossrefGoogle Scholar
[103]
Pulvermüller F, Cook C, Hauk O. Inflection in action: Semantic motor system activation to noun- and verb-containing phrases is modulated by the presence of overt grammatical markers. NeuroImage. 2012;60(2):1367-79. CrossrefPubMedGoogle Scholar
[104]
de Zubicaray G, Arciuli J, McMahon K. Putting an “end” to the motor cortex representations of action words. J Cogn Neurosci. 2013;25(11):1957-74. CrossrefPubMedGoogle Scholar
[105]
Martin A, Wiggs CL, Ungerleider LG, Haxby JV. Neural correlates of category-specific knowledge. Nature. 1996;379:649-52. CrossrefPubMedGoogle Scholar
[106]
Perani D, Schnur T, Tettamanti M, Gorno-Tempini M, Cappa SF, Fazio F. Word and picture matching: A PET study of semantic category effects. Neuropsychologia. 1999;37(3):293-306. PubMedCrossrefGoogle Scholar
[107]
Devlin JT, Moore CJ, Mummery CJ, Gorno-Tempini ML, Phillips JA, Noppeney U, et al. Anatomic constraints on cognitive theories of category specificity. NeuroImage. 2002;15(3):675-85. CrossrefPubMedGoogle Scholar
[108]
Rizzolatti G, Craighero L. The mirror-neuron system. Ann Rev Neurosci. 2004;27:169-92. CrossrefGoogle Scholar
[109]
Noppeney U, Patterson K, Tyler LK, Moss H, Stamatakis EA, Bright P, et al. Temporal lobe lesions and semantic impairment: A comparison of herpes simplex virus encephalitis and semantic dementia. Brain. 2007;130(Pt 4):1138-47. PubMedGoogle Scholar
[110]
Wagner AD, Desmond JE, Demb JB, Glover GH, Gabrieli JD. Semantic repetition priming for verbal and pictorial knowledge: A functional MRI study of left inferior prefrontal cortex. J Cogn Neurosci. 1997;9(6):714-26. PubMedCrossrefGoogle Scholar
[111]
Vuilleumier P, Henson RN, Driver J, Dolan RJ. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci. 2002;5(5):491-9. CrossrefPubMedGoogle Scholar
[112]
Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JD. Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. J Neurosci. 1995;15(9):5870-8. CrossrefPubMedGoogle Scholar
[113]
D’Esposito M, Postle BR, Rypma B. Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Exp Brain Res. 2000;133(1):3-11. CrossrefPubMedGoogle Scholar
[114]
Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage. 2010;50(3):1313-9. PMCID: 2845804. PubMedCrossrefGoogle Scholar
[115]
Price CJ, Wise RJS, Frackowiak RSJ. Demonstrating the implicit processing of visually presented words and pseudowords. Cereb Cortex. 1996;6(1):62-70. PubMedCrossrefGoogle Scholar
[116]
Pulvermüller F, Harle M, Hummel F. Neurophysiological distinction of verb categories. Neuroreport. 2000;11(12):2789-93. PubMedCrossrefGoogle Scholar
[117]
Boulenger V, Roy AC, Paulignan Y, Deprez V, Jeannerod M, Nazir TA. Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. J Cogn Neurosci. 2006;18(10):160715. Google Scholar
[118]
Barsalou LW, Simmons WK, Barbey AK, Wilson CD. Grounding conceptual knowledge in modality-specific systems. Trends Cogn Sci. 2003;7(2):84-91. PubMedCrossrefGoogle Scholar
[119]
Shebani Z, Pulvermüller F. Moving the hands and feet specifically impairs working memory for arm- and leg-related action words. Cortex. 2013;49(1):222-31. PubMedCrossrefGoogle Scholar
Comments (0)