Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Transport and Telecommunication Journal

The Journal of Transport and Telecommunication Institute

4 Issues per year


Cite Score 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.324
Source Normalized Impact per Paper (SNIP) 2016: 1.129

Open Access
Online
ISSN
1407-6179
See all formats and pricing
More options …

Homogenization Effects of Variable Speed Limits

Alvaro Garcia-Castro
  • Corresponding author
  • Transportation Research Centre (TRANSyT) Universidad Politecnica de Madrid. Escuela de Ingenieros de Caminos, Canales y Puertos, Avda. Profesor Aranguren s/n. Madrid. Spain Phone: +34 91 336 52 34. Fax: +34 91 336 53 62.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andres Monzon
  • Transportation Research Centre (TRANSyT) Universidad Politecnica de Madrid. Escuela de Ingenieros de Caminos, Canales y Puertos, Avda. Profesor Aranguren s/n. Madrid. Spain Phone: +34 91 336 52 34. Fax: +34 91 336 53 62
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-25 | DOI: https://doi.org/10.2478/ttj-2014-0012

Abstract

Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) - as opposed to fixed limits - have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values.

Keywords: Effectiveness indicator; variable speed limits; dynamic speed limits; GPS application; speed management; floating car data

References

  • 1. Giles, M.J. (2004). Driver speed compliance in Western Australia: a multivariate analysis. Transport Policy, 11(3), 227-235.Google Scholar

  • 2. Van Nes, N., Brandenburg, S. & D. Twisk. (2008). Dynamic speed limits; effects on homogeneity of driving speed. Intelligent Vehicles Symposium, IEEE, 269.Google Scholar

  • 3. Elvik, R. (2005). Speed and road safety - Synthesis of evidence from evaluation studies, Transportation Research Record: Statistical Methods; Highway Safety Data, Analysis, and Evaluation; Occupant Protection; Systematic Reviews and Meta-Analysis, no. 1908 (pp. 59-69). Washington.Google Scholar

  • 4. Ntziachristos, L. & Z. Samaras. (2000). Speed-dependent representative emission factors for catalyst passenger cars and influencing parameters. Atmospheric Environment, 34(27), 4611-4619.Google Scholar

  • 5. Makarewicz, R. & M. Gałuszka. (2011). Road traffic noise prediction based on speed-flow diagram. Applied Acoustics, 72(4), 190-195.Web of ScienceCrossrefGoogle Scholar

  • 6. Sisiopiku, V. (2011). Variable Speed Control: Technologies and Practice, Proceedings of the 11th Annual Meeting of ITS America, 2011, Virginia.Google Scholar

  • 7. Peltola, H. (2000). Seasonally changing speed limits - Effects on speeds and accidents. Transportation Research Record: Journal of the Transportation Research Board, 1734, 46-51.Google Scholar

  • 8. Wyoming Department of Transport. (May 10, 2012). Variable speed limits replaces seasonal limit on I-80 section, 2010. Available at - http://www.dot.state.wy.us/wydot/news_info/news_releases;jsessionid=8C31A2CE4E803278FC9A1703A8425BC4?template=tpl.newsDetail&newsID=910Google Scholar

  • 9. Land Tirol. (May 24, 2012). Tempo 100 auf der Autobahn - warum? (In German). Available at - http://www.tirol.gv.at/themen/verkehr/verkehrsplanung/verkehrsprojekte/tempo100Google Scholar

  • 10. Lehming, B. (2008). Noise reduction plan for Berlin - Action plan, Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz. Abt. III Umweltpolitik, Referat Immissions schutz. Berlin.Google Scholar

  • 11. Transport and Main Roads. (2011). School Environment Safety Technical Guidelines. Queensland Government, Queensland, Australia.Google Scholar

  • 12. Allaby, P., Hellinga, B. & M. Bullock. (2007). Variable Speed Limits: Safety and Operational Impacts of a Candidate Control Strategy for Freeway Applications. Intelligent Transportation Systems, IEEE Transactions on, 8(4), 671-680.Google Scholar

  • 13. Hegyi, A., De Schutter, B. & J. Hellendoorn. (2005). Optimal coordination of variable speed limits to suppress shock waves. IEEE Transactions on Intelligent Transportation Systems, 6(1), 102-112.Google Scholar

  • 14. Xu, J., Liang, F. & W. Yu. (2006). Coordinated Control of Variable Speed Limits Based on Neural Dynamic Optimization. In “Vehicular Electronics and Safety”, ICVES, IEEE International Conference on Vehicular Electronics and Safety (pp. 163). Shanghai, China.Google Scholar

  • 15. Ghods, A.H., Fu, L. & A. Rahimi-Kian. (2010). An Efficient Optimization Approach to Real-Time Coordinated and Integrated Freeway Traffic Control. IEEE Transactions on Intelligent Transportation Systems, 11(4), 873-884.Google Scholar

  • 16. Xiao-Yun, L., Varaiya, P., Horowitz, R., Dongyan, S. & S.E.Shladover. (2010). A new approach for combined freeway Variable Speed Limits and Coordinated Ramp Metering. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (pp. 491). Funchal, Portugal.Google Scholar

  • 17. Highways Agency. (2004). M25 Controlled Motorways. Summary Report. Bristol (UK): Highways Agency Publications Group.Google Scholar

  • 18. Nissan, A. & X. Bang. (2006). Evaluation of impacts of the motorway control system (MCS) in Stockholm. In Proceedings ofthe European Transport Conference, AET. Strasbourg, France.Google Scholar

  • 19. García, A. (2009). Estudio sobre la gestión variable de la velocidad en las vías de acceso a las áreas urbanas, Cambra Oficial de Comerç, Indústria i Navegació de Barcelona. Barcelona, Spain.Google Scholar

  • 20. Heydecker, B.G. & J.D. Addison. (2011). Analysis and modelling of traffic flow under variable speed limits. Transportation Research, Part C: Emerging Technologies, 19(2), 206-217.Google Scholar

  • 21. Zhicai, J., Xiaoxiong, Z. & Y. Hongwei. (2004). Simulation research and implemented effect analysis of variable speed limits on freeway. In Proc. of the 7th International IEEE Conference on Intelligent Transportation Systems (pp. 894). Washington.Google Scholar

  • 22. Schick, P. (2003). Einfluss von Streckenbee in flussungs anlagen auf die Kapazität von Autobahn abschnittensowie die Stabilität des Verkehrsflusses. (In German) Ph. D. Thesis. Institut für Straßenund Verkehrswesen Universität, Stuttgart.Google Scholar

  • 23. Hoogendoorn, S.P. (1999). Multiclass continuum modelling of multilane traffic flow. Delft, The Netherlands: Delft University Press.Google Scholar

  • 24. Knoop, V.L., Duret, A., Buisson, C. & B. Van Arem. (2010). Lane distribution of traffic near merging zones influence of variable speed limits. In Proc. of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 485). Madeira, Portugal.Google Scholar

  • 25. ECMT. (2007). Congestion management measures that release or provide new capacity. In OECD/ECMT (Eds.), Managing urban traffic congestion (pp. 229). France: OECD Publishing.Google Scholar

  • 26. Lee, C., Hellinga, B. & F. Saccomanno. (2007). Assessing safety benefits of variable speed limits.Transportation research record: journal of the transportation research board, 1897, 183-190.Google Scholar

  • 27. Piao, J. & McDonald, M. (2008). Safety Impacts of Variable Speed Limits - A Simulation Study. In Proc. of the 11th International IEEE Conference on Intelligent Transportation Systems, (ITSC) (pp. 833). Beijing, China.Google Scholar

  • 28. Robinson, M. (2000). Examples of Variable Speed Limit Applications. In Speed Management Workshop, the 79th Annual Meeting of Transportation Research Board. Washington.Google Scholar

  • 29. Benedekand, C.M., Rilett, L.R. (1998). Equitable traffic assignment with environmental cost functions. Journal of Transportation Engineering - ASCE, 124, 16-22Google Scholar

  • 30. Zegeye, S.K., De Schutter, B., Hellendoorn, J. & E.A. Breunesse. (2010). Variable speed limits for area-wide reduction of emissions. In Proc. of the 13th International IEEE Intelligent Transportation Systems (ITSC) (pp. 507-510). Funchal, Portugal.Google Scholar

  • 31. Hoffmann-Leichter. (1997). Untersuchung der Auswirkung der Verkehrsbeeinflussungs anlage auf der A5 Freidberg - Frankfurt auf Verkehrsablauf, Verkehrssicherheit und Reisezeit, Hessischen Landesamtes fürStraßen - und Verkehrswesen. Falkensee Germany.Google Scholar

  • 32. Fildes, B.N. & S.J. Lee. (1993). The speed review: Road environment, Behavior, Speed limits, Enforcement and Crashes, (pp. 33-34). Monash University, Accident Research Centre.Google Scholar

  • 33. Wegman,V., Aarts, L. & C. Bax. (2008). Advancing sustainable safety: National road safety outlook for The Netherlands for 2005-2020. Safety Science, 46(2), 323-343.Web of ScienceGoogle Scholar

  • 34. Rakha, H., Van Aerde, M., Ahn, K. & A.A. Trani. (2000). Requirements for evaluating traffic signal control impacts on energy and emissions based on instantaneous speed and acceleration measurements. Transportation Research Record: Journal of the Transportation Research Board, 1738(1), 56-67.Google Scholar

  • 35. El-Shawarby, I., Ahn, K. & H. Rakha. (2005). Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions. Transportation Research, Part D: Transport and Environment, 10(1), 13-30.Google Scholar

  • 36. Joumard, R., Jost, P., Hickman, J. & D. Hassel. (1995). Hot passenger car emissions modelling as a function of instantaneous speed and acceleration. Science of the Total Environment, 169(1-3), 167-174.Google Scholar

  • 37. Ding, Y. & H. Rakha. (2002). Trip-based explanatory variables for estimating vehicle fuel consumption and emission rates. Water, Air, & Soil Pollution: Focus, 2(5), 61-77.Google Scholar

  • 38. Smit, R., Smokers, R. & E. Rabe. (2007) A New Modelling Approach for Road Traffic Emissions: VERSIT+. Transportation Research Part D-Transport and Environment, 12(6), 414-422. Google Scholar

About the article

Published Online: 2014-04-25

Published in Print: 2014-06-01


Citation Information: Transport and Telecommunication Journal, ISSN (Online) 1407-6179, ISSN (Print) 1407-6160, DOI: https://doi.org/10.2478/ttj-2014-0012.

Export Citation

© Transport and Telecommunication Institute. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alvaro Garcia-Castro and Andres Monzon
Sensors, 2014, Volume 14, Number 11, Page 21358

Comments (0)

Please log in or register to comment.
Log in