Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Vegetable Crops Research Bulletin

2 Issues per year

Open Access
Online
ISSN
1898-7761
See all formats and pricing
More options …

Self-Compatibility Inheritance in Tomatillo (Physalis Ixocarpa Brot.)

Juan Mulato-Brito
  • Departamento de Fitotecnia, Universidad Autónoma Chapingo Chapingo, Edo. de México. C.P. 56230, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aureliano Peña-Lomelí
  • Departamento de Fitotecnia, Universidad Autónoma Chapingo Chapingo, Edo. de México. C.P. 56230, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime Sahagún-Castellanos
  • Departamento de Fitotecnia, Universidad Autónoma Chapingo Chapingo, Edo. de México. C.P. 56230, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Clemente Villanueva-Verduzco
  • Departamento de Fitotecnia, Universidad Autónoma Chapingo Chapingo, Edo. de México. C.P. 56230, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José de Jesús López-Reynoso
  • Departamento de Fitotecnia, Universidad Autónoma Chapingo Chapingo, Edo. de México. C.P. 56230, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-12-31 | DOI: https://doi.org/10.2478/v10032-007-0026-4

Self-Compatibility Inheritance in Tomatillo (Physalis Ixocarpa Brot.)

One of the main limiting factors to improve tomatillo is the presence of self-incompatibility which has been reported to be gametophytic. In an early research, a self-compatible plant was found in the Rendidora landrace and this allowed us to investigate the inheritance of self-compatibility gene (s) in tomatillo. The following crosses were performed: self-compatible x self-incompatible, self-compatible x self-compatible and self-incompatible x self-incompatible and their respective reciprocal crosses. Segregation ratios on self-compatibility versus self-incompatibility in their offspring indicate that self-compatibility is not inherited via cytoplasm, so the responsible gene is located in chromosomes. The inheritance of self-compatibility is due to a single dominant gene (Sc) which is a mutation at the S locus. Self-compatible individuals are strictly heterozygous (Sc,4) and finally, the self-compatibility allele (Sc), in the male side (Sc,4), seems to be non functional when self-pollinating the Sc,4 stigma. A single gene controlling stem pubescence was also found.

Dziedziczenie Samozgodności U Miechunki Pomidorowej (Physalis Ixocarpa Brot.)

Jednym z głównych czynników ograniczających w hodowli miechunki pomidorowej jest samoniezgodność, określona w literaturze jako gametofityczna. We wcześniejszych badaniach znaleziono roślinę samozgodną w odmianie lokalnej Rendidora i to pozwoliło nam na badania genu samozgodności (s) w tym gatunku. Dokonano następujących krzyżowań: samozgodne x samoniezgodne, samozgodne x samozgodne i samoniezgodne x samoniezgodne, a także odpowiednie odwrotne krzyżowania. Stosunek samozgodności do samoniezgodności wśród potomstwa otrzymanego z tych krzyżowań wskazuje, że dziedziczenie samozgodności nie jest cytoplazmatyczne, a więc odpowiedni gen znajduje się w chromosomach. Za dziedziczenie samozgodności odpowiada jeden dominujący gen (Sc), który stanowi mutację w pozycji S. Osobniki samozgodne są ściśle heterozygotyczne (Sc,4). Allel samozgodności (Sc) po stronie męskiej (Sc,4) wydaje się być niefunkcjonalny, gdy następuje samozapylenie znamienia Sc,4. Stwierdzono również, że inny pojedynczy gen kontroluje włoskowatość łodygi u miechunki pomidorowej.

Keywords: tomatillo; Solanaceae; self-compatibility gene; stem pubescence gene; inheritance

  • Bateman A.J. 1952. Self-incompatibility systems in the angiosperms. I. Theory. Heredity. 6: 285-310.Google Scholar

  • Bateman A.J. 1954. Self-incompatibility systems in the angiosperms. II. Iberis amara.Heredity. 8: 305-332.Google Scholar

  • Cipar M.S., Peloquin S.J., Hougas R.W. 1964. Variability in the expression of self-incompatibility in tuber-bearing diploid Solanum species.Am. Potato J. 41:155-162.Google Scholar

  • Tsukamoto T., Ando T., Kokubun H., Watanabe H., Masada M., Zhu X., Marchesi E., Kao T. 1999. Breakdown of self-incompatibility in a natural population of Petunia axilaris (Solanaceae) in Uruguay containing both self-incompatible and self-compatible plants. Sex Plant Reprod. 12: 6-13.CrossrefGoogle Scholar

  • Williams W. 1965. Genetical principles and plant breeding. Blackwell Scientific Publications. Oxford, England. 527 pp.Google Scholar

  • Wünsch A., Hormaza J.I. 2004. Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod. 17: 203-210.Google Scholar

  • Zuberi M.I, Zuberi S., Lewis D. 1981. The genetics of incompatibility in Brassica. I. Inheritance of self-compatibility in Brassica campestris L. var. Toria. Heredity. 46:175-190.Google Scholar

  • Cook L.M., Soltis P.S. 2000. Mating systems of diploid and allotetraploid populations of Tragopogon (Asteraceae). II. Artificial populations. Heredity. 84: 410-415.PubMedGoogle Scholar

  • De Nettancourt D. 1977. Incompatibility in angiosperms. Springer Verlag, Berlin.Google Scholar

  • East E.M. 1940. The distribution of self-sterility in flowering plants. Proc. Amer. Phil. Soc. 82, 449.Google Scholar

  • East E.M., Mangelsdorf P. 1925. A new interpretation of the hereditary behaviour of self-sterile plants. Proc. Nat. Acad. Sci. U.S. 24, 56.Google Scholar

  • Gerstel D.U. 1950. Self-incompatibility studies in Guayule II. Inheritance. Genetics. 45, 482.Google Scholar

  • Hosaka K., Hanneman R.E. 1998. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica. 99: 191-197.Google Scholar

  • Hughes M.B., Babcock E.B. 1950. Self-incompatibility in Crepis foetida. Genetics. 35, 570.Google Scholar

  • Husband B.C., Schemske D.W. 1997. The effect of inbreeding in diploid and tetraploid populations of Epibolium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution. 51: 737-746.Google Scholar

  • Iezzoni A., Smith H., Albertini A. 1990. Cherries. pp. 109-174. In: Genetic Resources of Temperate Fruit and Nut Crops 1. (J.N. Moore & J.R. Bollington eds.). Int. Soc. Hort. Sci., Wageningen, The Netherlands.Google Scholar

  • Kakizaki Y. 1930. Self- and cross-incompatibilty in the common cabbage. Jpn. J. Bot. 5:133-208.Google Scholar

  • Keep E. 1985. Heterozygosity for self-incompatibility in Lloyd George red raspberry. Fuit Var. J. 39(4): 5-7.Google Scholar

  • Kondo K., Yamamoto M., Itahashi R., Sato, T. 2002. Insights into evolution of self-compatibility in Lycopersicon from a study of stylar factors. Plant Journal. 30: 143-152.Google Scholar

  • Kowyama Y., Kunz C., Lewis I., Newbigin E., Clarke A.E., Anderson M.A. 1994. Self-compatibility in a Lycopersicon peruvianum variant (LA2157) is associated with lack of style S-RNase activity. Theor. Appl. Genet. 88: 859-864.Google Scholar

  • Onus A.N., Pickersgill B. 2004. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann. Bot. 94: 289-295.Google Scholar

  • Pandey K.K. 1957. Genetics of self-incompatibility in Physalis ixocarpa Brot.- A new system. Amer. J. Botany. 44:879-887.Google Scholar

  • Pandey K.K. 1960. Self-incompatibility system in two Mexican species of Solanum.Nature. Lond., 185, 483.Google Scholar

  • Richards A.J. 1986. Plant breeding systems. Allen and Unwin, London.Google Scholar

  • Soost R.K. 1969. The incompatibility gene system in citrus. pp: 189,190. In: Proc. of the First Intl. Citrus Symp. 1, (H.D. Chapman ed.).University of California, Riverside, CA.Google Scholar

  • Stone J.L. 2002. Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility. Quart. Rev. Biol. 77(1): 17-32.Google Scholar

  • Takayama S., Isogai A. 2005. Self-icompatibility in plants. Annu. Rev. Plant Biol. 56: 467-489.PubMedWeb of ScienceGoogle Scholar

  • Lundqvist A. 1964. The nature of the two loci incompatibility system in grasses. IV. Interaction between the loci in relation to self-compatibility in Festuca pratensis Huds. Hereditas. 52: 221-234.Google Scholar

  • Mable B.K. 2004. Polyploidy and self-compatibility: is there an association? New Phytol. 162: 803-811.Google Scholar

  • Menzel M.Y. 1951. The cytotaxonomy and genetics of Physalis. Proc Amer. Phil. Soc. 95:132-183.Google Scholar

About the article


Published Online: 2007-12-31

Published in Print: 2007-01-01


Citation Information: Vegetable Crops Research Bulletin, ISSN (Online) 1898-7761, ISSN (Print) 1506-9427, DOI: https://doi.org/10.2478/v10032-007-0026-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in