Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Vegetable Crops Research Bulletin

2 Issues per year

Open Access
Online
ISSN
1898-7761
See all formats and pricing
More options …

Enhanced Sweet Corn Propagation: Studies on Transplanting Feasibility and Seed Priming

Khalid El-Hamed
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Elwan
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Walied Shaban
  • Department of Agriculture Botany, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-02-15 | DOI: https://doi.org/10.2478/v10032-011-0016-4

Enhanced Sweet Corn Propagation: Studies on Transplanting Feasibility and Seed Priming

Sweet corn hybrids with high-sugar genotypes (sh2) has inherent problem of low seed emergence and stand in the field. This study was conducted to determine the effect of seed size, tray cell size and growing media components on sweet corn transplant transplanting. Other objectives were to evaluate the effect of priming sweet corn seeds on germination in the field. Bio-priming with Trichoderma and Bacillus, osmopriming with KNO3, and hydro-priming with H2O have been tested. The results indicated that transplanting sweet corn is feasible with high quality transplants from seeds that germinate well in disease-free environment. Large sweet corn seeds, large tray cells, and vermiculite-based growing media proved to gave higher germination percentages. While same factors did not show pronounced effect on seedling performance in terms of root and shoot length and fresh weight. In the priming experiment, the bio-priming treatment showed the highest germination of seeds percentage among other priming treatments and the control. Sweet corn seeds treated with Bacillus megaterium germinated 50% higher than seeds treated with Trichoderma spp. as bio-control agents. Aspergillus niger, and Penicillium represented 65% of pathogens responsible for failure of sweet corn seed germination. The results of this study demonstrated the feasibility of enhanced sweet corn seed propagation through transplanting and seed priming to improve emergence and field stand.

Rozmnażanie Super Słodkiej Kukurydzy Cukrowej: Badania Nad Kondycjonowaniem Nasion Oraz Produkcją Z Rozsady

Uprawa mieszańców kukurydzy cukrowej z genotypami o wysokiej zawartości cukru (sh2) jest utrudniona ze względu na słabe wschody nasion. Badania przeprowadzono w celu określenia wpływu wielkości nasion, wielkości komórek w paletach rozsadowych i komponentów podłoży uprawowych na młode rośliny kukurydzy cukrowej. Drugim celem badań była ocena wpływu kondycjonowania nasion kukurydzy cukrowej na kiełkowanie nasion w polu. Zastosowano bio-priming przy użyciu grzybów Trichoderma i bakterii Bacillus, osmopriming w roztworze KNO3 oraz hydropriming w H2O. Badania wykazały, że przesadzanie kukurydzy cukrowej jest możliwe pod warunkiem zastosowania wysokiej jakości rozsady uzyskanej z nasion dobrze kiełkujących w wolnym od chorób środowisku. Duże nasiona, duże komórki w paletach rozsadowych oraz podłoża na bazie wermikulitu sprzyjały kiełkowaniu nasion kukurydzy cukrowej. Natomiast te same czynniki nie wykazały wyraźnego wpływu na wzrost sadzonek pod względem długości korzeni i pędów oraz świeżej masy. W doświadczeniu z kondycjonowaniem nasion traktowanie mikroorganizmami dało najwyższy procentowy udział kiełkujących nasion w porównaniu do pozostałych zabiegów kondycjonowania i kombinacji kontrolnej. Nasiona traktowane bakteriami Bacillus megaterium kiełkowały o 50% lepiej niż nasiona traktowane grzybami Trichoderma spp.

Aspergillus niger i Penicillium stanowiły 65% patogenów odpowiedzialnych za porażenie nasion kukurydzy cukrowej. Wyniki badań wykazały możliwość rozmnażania super słodkiej kukurydzy cukrowej z rozsady oraz wykorzystanie kondycjonowania nasion dla poprawy wschodów oraz obsady roślin na polu.

Keywords: sweet corn; transplanting; seed size; tray cell size; seed priming; bio-priming; Bacillus megaterium; Trichoderma spp

  • Abo-Rezq H. M., Albaho M., Thomas B. 2009. Effect of sand in growing media on selected plant species. European Journal of Scientific Research 29 (4): 618-623.Google Scholar

  • Arenas M., Vavrina C. S., Cornell J. A., Hanlon E. A., Hochmuth G. I. 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience 37(2): 309-312.Google Scholar

  • Barnett H. L., Hunter B. B. 1972. Illustrated Genera of Imperfect Fungi. Burgess Publ. Co., Minnesota, USA. 241pp.Google Scholar

  • Basra A. S., Bedi S., Malik V. B. 1988. Accelerated germination of maize seeds under chilling stress by osmotic priming and associated changes in embryo phospholipids. Annals of Botany. 61(5): 635-639.Google Scholar

  • Bennett M. A., Waters L. 1987a. Seed hydration treatments for improved sweet corn germination and stand establishment. Journal of the American Society for Horticultural Science 112(1): 45-49.Google Scholar

  • Bennett M. A., Waters L. 1987b. Germination and emergence of high sugar sweet corn is improved by pre-sowing hydration of seed. Hort-Science 22(2): 236-238.Google Scholar

  • Bennett M. A., Waters L., Curme G. H. 1988. Kernel maturity, seed size, and sweet hydration effects on the seed quality of a sweet corn inbred. Journal of the American Society for Horticultural Science 113(3): 348-353.Google Scholar

  • Bennett M. A., Callan N. W., Fritz V. A. 1991. Seed treatments for disease control. HortTechnology 1(1): 84-87.Google Scholar

  • Bennett M. A., Fritz V. A., Callan N. W. 1992. Impact of seed treatments on crop stand establishment. Hort-Technology 2(3): 345-349.Google Scholar

  • Bilderback T. E., Fonteno W. C. 1987. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hort. 5(4): 180-182.Google Scholar

  • Bjorkman T., Blanchard L. M., Harman G. 1998. Growth enhancement of shrunken-2 (sh2) sweet corn by Trichoderma harzianum 1295-22: effect of environmental stress. Journal of the American Society for Horticultural Science 123: 35-40.Google Scholar

  • Bjorkman T. 2004. Effect of Trichoderma colonization on auxin-mediated regulation of root elongation. Plant Growth Regulation 43: 89-92.CrossrefGoogle Scholar

  • Boctes T. C., Girardina P. 1994. Effects of seed size on maize growth from emergence to silking. Maydica 39: 213-218.Google Scholar

  • Bremner P. M., Eckersal R. N., Scott R. K. 1963. The relative importance of embryo and endosperm size in causing the effects associated with seed size in wheat. J. Agr. Sci. 61: 139-145.Google Scholar

  • Callan N. W., Mathre D. E., Miller J. B. 1990. Bio-priming seed treatment for biological control of Pythium ultimum preemergence dampening-off in sh2 sweet corn. Plant Disease 74 (5): 368-372.CrossrefGoogle Scholar

  • Callan N. W., Mathre D. E., Miller J. B. 1991. Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. HortScience 26(9): 1163-1165.Google Scholar

  • Callan N. W., Mathre D. E., Miller J. B., Vavrina C. S. 1997. Biological seed treatments: factors involved in the efficacy. HortScience 32 (2): 179-183.Google Scholar

  • Cameron J. W., Cole D. A., Van Maren A. 1962. Seed size effects on hybrid sweet corn in coachella valley. California Agriculture 16(6): 6-7.Google Scholar

  • Cantliffe D. F., Bieniek M. 1988. Improved plant stands of super sweet corn by seed treatment. Proc. Fla. State Hort. Soc. 101: 372-376.Google Scholar

  • Cantliffe D. J. 1993. Pre-and postharvest practices for improved vegetable transplant quality. HortTechnology 3(4): 415-418.Google Scholar

  • Chet I., Ordentlich A., Shapira R., Oppenheim A. B. 1990. Mechanisms of biocontrol of soilborne plant pathogens by Rhizobacteria. Plant and Soil 129(1): 85-92.CrossrefGoogle Scholar

  • Di Benedetto Molinari A. J., Rattin J. 2006. The effect of transplant in sweet maize (Zea mays L.) II. Container root restriction. International Journal of Agricultural Research 1(6): 555-563.Google Scholar

  • Dunwell W., Wolfe D., Maksymowicz W., Slone D. 1993. Producing sweet corn transplant in a float system greenhouse. HortScience 28 (4): 275.Google Scholar

  • Durner E. F., Poling E. B., Maas J. L. 2002. Recent Advances in strawberry plug transplant technology. HortTechnology 12(4): 545-550.Google Scholar

  • El-Saifi S. K., Ahmed H. M. I., Morsi M. M., Hassan S. M., El-Shatoury R. S. 2010. An attempt to improve sweet corn seed germination under low temperature conditions by using seed priming. J. Plant Production 1(2): 171-181.Google Scholar

  • Gamiely S., Smittle D. A., Mills H. A., Banna G. I. 1990. Onion seed size, weight, and elemental content affect germination and bulb yield. Hort-Science 25 (5): 522-523.Google Scholar

  • Gelmond H. 1978. Problems in crop seed germination. In: Crop Physiology. pp. 1-78. Oxford and B. H. Publishing Co. New Delhi.Google Scholar

  • Gerber J. M., Caplan L. A. 1989. Priming sweet corn seed for improved emergence. HortScience 24 (5): 854.Google Scholar

  • Giles B. E. 1990. The effects of variation in seed size on growth and reproduction in the wild barley (Hordeum vulgare ssp. spontaneum). Heredity 64: 239-250.CrossrefGoogle Scholar

  • Gilman J. C. 1957. A Manual of Soil Fungi. The Iowa State College Press, Ames, Iowa, USA. 450 pp.Google Scholar

  • Gubbels G. H. 1974. Growth of corn seedlings under low temperatures as affected by genotype, seed size, total oil, and fatty acid content of the seed. Canadian Journal of Plant Science 54: 425-426.CrossrefGoogle Scholar

  • Gubbels G. H. 1975. Emergence, seedling growth and yield of sweet corn after pre-germination at high temperature. Canadian Journal of Plant Scienc. 55: 995-999.Google Scholar

  • Halfon-Meiri A., Solil Z. 1990. Factors affecting seedling blight of sweet corn caused by Pinicillium oxalicum. Plant Disease 74: 36-39.Google Scholar

  • Hall M. R. 1989. Cell size of seedling containers influences early vine growth and yield of transplanted watermelon. HortScience 24(5): 771-773.Google Scholar

  • Halsey L. H. 1969. Seed size and planting depth effects on two tomato cultivars. Proc. Florida State Horticultural Society 82: 118-120.Google Scholar

  • Harman G. E., Taylor A. G. 1988. Improved seedling performance by integration of biological control agents at favorable pH levels with soild matrix priming. Phytopathology 78 (5): 520-525.CrossrefGoogle Scholar

  • Harman G. E., Taylor A. G., Stasz T. E. 1989. Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Disease 73 (8): 631-637.CrossrefGoogle Scholar

  • Harman G. E. 2000. Myths and dogmas of biocontrol, changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84 (4): 377-393.CrossrefGoogle Scholar

  • Harman G.E, Bjorkman T., Ondik K., Shoresh M. 2008. Changing paradigms on mode of action and uses of Trichoderma spp. for biocontrol. Outlooks on Pest Management 19(1):1-6.Google Scholar

  • Hartmann H. T., Kester D. E., Davies F. T., Geneve R. L. 1997. Plant Propagation: Principles and Practices. Prentice Hall, Upper saddle River, N. J. U. S. A. 770 pp.Google Scholar

  • Hartz T. K., Caprile J. 1995. Germination of sh2 sweet corn following seed disinfection, solid-matrix priming, and microbial seed treatment. HortScience 30(7): 1400-1402.Google Scholar

  • Hawkins R. C., Cooper P. J. M. 1979. Effects of seed size on growth and yield of maize in the Kenya highlands. Experimental Agriculture 15:73-79.CrossrefGoogle Scholar

  • Heather D. W., Sieczka J. B. 1991. Effect of seed size and cultivar on emergence and stand establishment of broccoli in crusted soil. Journal of the American Society for Horticultural Science 116(6): 946-949.Google Scholar

  • Hicks D. R., Peterson R. H., Lueschen W. E., Ford J. H. 1976. Seed grade effect on corn performance. Agronomy Journal 68(5): 819-820.CrossrefGoogle Scholar

  • Howell C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Diseases 87: 4-10.Google Scholar

  • Hung P. E., Fritz V. A., Waters L. 1992. Infusion of shrunken-2 sweet corn seed with organic solvents: effects on germination and vigor. Hort-Science 27(5): 467-470.Google Scholar

  • Hunter R. B., Kannenberg L. W. 1972. Effect of seed size on emergence, grain yield, and plant height in corn. Canadian Journal of Plant Science 52: 252-256.CrossrefGoogle Scholar

  • Khan A. A. 1992. Preplant physiological seed conditioning. Hort. Rev. 13: 131-181.Google Scholar

  • Khehra A. S., Brar H. S., Sharma R. K., Dhilon B. S., Malhotra V. V. 1990. Transplanting of maize during the winter in India. Agronomy Journal 82(1): 41-47.CrossrefGoogle Scholar

  • Lazarovits G., Nowak J. 1997. Rhizobacteria for improvement of plant growth and establishment. Hort-Science 32: 188-192.Google Scholar

  • Liptay A., Edwards D. 1994. Tomato seedling growth in response to variation in root container shape. HortScience 26(6): 633-635.Google Scholar

  • Mao W., Lewis J. A., Hebbar P. K., Lumsden R. D. 1997. Seed treatment with a fungal or bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Disease 81 (5): 450-454.CrossrefGoogle Scholar

  • Mathre D. E., Johnston R. H., Callan N. W., Mohan S. K., Martin J. M., Miller J. B. 1995. Combined biological and chemical seed treatments for control of two seedling diseases of sh2 sweet corn. Plant Disease 79 (11): 631-637.Google Scholar

  • Mathre D. E., Cook R. J., Callan N. W. 1999. From discovery to use, traversing the world of commercializing bio-control agents for plant disease control. Plant Disease 83 (11): 972-983.CrossrefGoogle Scholar

  • Maynard E. T., Vavrina C. S., Scott W. D. 1996. Containerized muskmelon transplants: Cell volume effects on pretransplant development and subsequent yield. HortScience 31(1): 58-61.Google Scholar

  • Menasha S. R. 2005. The effects of plug transplant container volume and root substrate composition on Zea mays L. root architecture, yield and quality. M. S. Thesis, University of Vermont, USA.Google Scholar

  • Menasha S. R., Tignor M. E. 2004. Plug tray cell volume effects on sweet corn transplant root architecture and biomass accumulation. HortScience 39(4): 865.Google Scholar

  • Milks R. R., Fonteno W. C., Larson R. A. 1989. Hydrology of horticultural substrates: III. Predicting air and water content of limited volume plug cells. Journal of the American society for Horticultural Science 114(1): 57-61.Google Scholar

  • Miller R. A. 1972. Forcing sweet corn. HortScience 7(4): 188-424.Google Scholar

  • Molatudi R. L., Mariga I. K. 2009. The effect of maize seed size and depth of planting on seedling emergence and seedling vigor. Journal of Applied Sciences Research 5 (12): 2234-2237.Google Scholar

  • Muchena S. C., Grogan C. O. 1977. Effects of seed size on germination of corn (Zea mays) under simulated water stress conditions. Canadian Journal of Plant Science 57, 921-923.CrossrefGoogle Scholar

  • Murray G. A. 1990. Priming sweet corn seed to improve emergence under cool conditions. HortScience 25(2): 231.Google Scholar

  • NeSmith D. S., Duval J. R. 1998. The effect of container size. HortTechnology 8 (4): 495-498.Google Scholar

  • Oexemann S. W. 1942. Relation of seed weight to vegetative growth differentiation, and yield in plants. American Journal of Botany 29: 72-81.CrossrefGoogle Scholar

  • Parera C. A., Cantliffe D. J. 1990. Improved stand establishment of shrunken-2 sweet corn by seed treatments. Proc. Fla. State Hort. Soc. 103: 153-157.Google Scholar

  • Parera C. A., Cantliffe D. J. 1991. Improved germination and modified imbibition of shrunken-2 sweet corn by seed disinfection and solid matrix priming. Journal of the American society for Horticultural Science 116(6): 942-945.Google Scholar

  • Pendleton J. W., Egli D. B. 1969. Potential yield of corn as affected by planting date. Agronomy Journal 61(1): 70-71.CrossrefGoogle Scholar

  • Pyke K. A., Hedley C. L. 1983. The effect of foliage phenotype and seed size on the crop growth of Pisum sativum L. Euphytica 32: 193-203.CrossrefGoogle Scholar

  • Rattin J., Di Benedetto A., Gornatti T. 2006. The effects of transplant in sweet maize (Zea mays L.) I. growth and yield. International Journal of Agricultural Research 1(1): 58-67.Google Scholar

  • Rudresh D. L., Shivaprakash M. K., Prasad R. D. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology 28: 139-146.CrossrefGoogle Scholar

  • Ruff M. S., Krizek D. T., Mirecki R. M., Inouye D. W. 1987. Restricted root zone volume: Influence on growth and development of tomato. Journal of the American Society for Horticultural Science 112(5): 763-769.Google Scholar

  • Sabota C., Beyl C., Biedermann J. A. 1987. Acceleration of sweet corn germination at low temperatures with Terra-Sorb or water presoaks. HortScience 22(3): 431-434.Google Scholar

  • Schmidt D. H., Tracy W. F. 1988. Endosperm type, inbred background and leakage of seed electrolytes during imbibition in sweet corn. Journal of the American Society for Horticultural Science 113: 269-272.Google Scholar

  • Shanmuganathan V., Benjamin L. R. 1992. The influence of sowing depth and seed size on seedling emergence time and relative growth rate in spring cabbage (Brassica oleracea var. capitata L.). Annals of Botany 69: 273-276.Google Scholar

  • Sperber J. I. 1957. Solubilization of mineral phosphates by soil bacteria. Nature 180: 994-995.CrossrefGoogle Scholar

  • Statsoft Inc. 2001. STATISTICA for Windows Version 6. http://www.statsoft.com

  • Styer R. C., Cantliffe D. J. 1983. Changes in seed structure and composition during development and their effect on leakage in two endosperm mutants of sweet corn. Journal of the American Society for Horticultural Science 108: 721-728.Google Scholar

  • Styer R. C., Cantliffe D. J. 1984. Dependence of seed vigor during germination on carbohydrate source in endosperm mutants of maize. Plant Physiology 76: 196-200.PubMedCrossrefGoogle Scholar

  • Taylor A. G., Ten Broeck C. W. 1988. Seedling emergence forces of vegetable crops. HortScience 23(2): 367-369.Google Scholar

  • Taylor A. G., Harman G. E. 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28: 321-339.CrossrefGoogle Scholar

  • Taylor A. G., Allen P. S., Bennett M. A., Bradford K. J., Burris J. S., Misra M. K. 1998. Seed enhancements. Seed Science Research 8: 245-256.Google Scholar

  • Tehranifar A., Poostchi, M., Arooei H., Nematti H. 2007. Effects of seven substrates on qualitative and quantitative characteristics of three strawberry cultivars under soilless culture. Acta Hort. 761: 485-488.Google Scholar

  • Varier A., Vari A. K., Dadlani M. 2010. The subcellular basis of seed priming. Current Science 99(4): 450-456.Google Scholar

  • Voigt R. L., Gardner C. O., Webster O. J. 1966. Inheritance of seed size in sorghum, Sorghum vulgare Pers. Crop Science 6 (6): 582-586.CrossrefGoogle Scholar

  • Wann E. V. 1980. Seed vigor and respiration of maize kernels with different endosperm genotypes. Journal of the American Society for Horticultural Science 105: 31-34.Google Scholar

  • Wann E. V. 1986. Leaching of metabolites during imbibition of sweet corn seed of different endosperm genotypes. Crop Science 26 (4): 731-733.CrossrefGoogle Scholar

  • Waters L. J., Burrows R. L., Bennett M. A., Schoenecker J. 1990. Seed moisture and transplant management techniques influence sweet corn stand establishment, growth, development and yield. Journal of the American Society for Horticultural Science 115 (6): 888-892.Google Scholar

  • Weindling R. 1932. Trichoderma tignorum as a parasite of other fungi. Phytopathology 2: 837-845.Google Scholar

  • Welbaum G. E., Frantz J. M., Gunatilaka M. K., Shen Z. 2001. A comparison of the growth, establishment and maturity of direct-seeded and transplanted sh2 sweet corn. HortScience 36 (4): 687-690.Google Scholar

  • Wolf D. W., Azanza F., Juvik J. A. 1997. Sweet corn. pp. 461-478. In: The Physiology of Vegetable Crops. (H. C. Wien, ed.) CAB International. USA.Google Scholar

  • Wyatt J. E., Mullins J. A. 1989. Production of sweet corn transplants. Hort-Science 24(6): 1039.Google Scholar

About the article


Published Online: 2012-02-15

Published in Print: 2011-01-01


Citation Information: Vegetable Crops Research Bulletin, ISSN (Online) 1898-7761, ISSN (Print) 1506-9427, DOI: https://doi.org/10.2478/v10032-011-0016-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in