Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Vegetable Crops Research Bulletin

2 Issues per year

Open Access
See all formats and pricing
In This Section

Impact of Grafting on Watermelon Growth, Fruit Yield and Quality

Fouad Mohamed
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
/ Khalid El-Hamed
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
/ Mohammed Elwan
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
/ Mennat-Allah Hussien
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
Published Online: 2012-08-30 | DOI: https://doi.org/10.2478/v10032-012-0007-0

Impact of Grafting on Watermelon Growth, Fruit Yield and Quality

Grafting is an alternative approach to reduce crop damage resulting from soil-borne pathogens and increases plant abiotic stress tolerance, which in turn increases crop production. The purpose of this study was to determine whether grafting could improve plant growth and fruit quality of watermelon through monitoring the changes induced by different rootstock-scion combinations. Watermelon (Citrullus lanatus) cv. Aswan F1 was grafted into five rootstocks (Nun 6001 F1, Strongtosa F1, Tetsukabuto F1, Ferro F1 and Shintoza F1) hybrids between Cucurbita maxima and Cucurbita moschata. Highest vegetative growth and fruit yield were obtained by ‘Nun 6001 F1’ as a rootstock using the tongue approach method. Grafting reduced significantly sex ratio by reducing the number of male flowers. Grafting increased significantly lycopene content in fruit flesh by 57% over the control treatment, but did not affect soluble solids content (SSC). One third of the control non-grafted plants died and Fusarium oxysporum was isolated as the responsible pathogen. These results indicate that grafting watermelon onto specific rootstock influences growth, productivity, and quality of the fruit as well as disease resistance. Grafting can be suggested as an alternative method to control of Fusarium wilt in watermelon production.

Wpływ Szczepienia Na Wzrost Roślin Oraz Plon I Jakość Owoców Arbuza

Szczepienie jest alternatywną metodą ograniczania szkód w uprawach rolnych powodowanych przez patogeny glebowe oraz zwiększa tolerancję roślin na stresy abiotyczne, co z kolei zwiększa wydajność upraw. Celem badań było ustalenie, czy szczepienie może poprawić wzrost roślin i jakość owoców arbuza poprzez monitorowanie zmian wywołanych przez różne kombinacje podkładkazraz. Arbuz (Citrullus lanatus) odm. Aswan F1 zaszczepiono na pięciu podkładkach (Nun 6001 F1, Strongtosa F1, Tet-sukabuto F1, Ferro F1 i Shintoza F1) mieszańców Cucurbita maxima i Cucurbita moschata. Największy wzrost wegetatywny i plon owoców uzyskano na podkładce Nun 6001 F1, stosując metodę szczepienia przez stosowanie z języczkiem. Szczepienie spowodowało istotny spadek stosunku płci poprzez zmniejszenie liczby kwiatów męskich. Szczepienie zwiększyło istotnie zawartość likopenu w miąższu owoców, o 57% w stosunku do kontroli, ale nie wpłynęło na zawartość rozpuszczalnych substancji stałych (ekstraktu). Jedna trzecia nieszczepionych roślin kontrolnych obumarła, za co odpowiedzialny był wyodrębniony patogen Fusarium oxysporum. Wyniki te wskazują, że szczepienie arbuza na określonej podkładce wpływa na wzrost, plonowanie i jakość owoców, a także na odporność na choroby. Szczepienie można zaproponować jako alternatywną metodę zapobiegania więdnięciu, powodowanemu przez grzyb Fusarium, w produkcji arbuza.

Keywords: grafting; Citrullus lanatus; rootstock; yield; lycopene content; Fusarium wilt

  • AOAC 1996. Official Methods of Analysis, 12th ed. Washington, DC: AOAC.

  • Abd El-Naby E. E. 2001. Studies on root rot and damping-off diseases of eggplants and pepper. M.Sc. Thesis, Faculty of Agriculture, Zagazig University, Egypt: pp. 156.

  • Ali M. A., Fahmi M. M., Mohamed R. O. 1972. On the breeding for resistnce of Fusarium wilt of watermelon. Egyptian J. Phytopathol. 4: 15-22.

  • Aloni B., Cohen R., Karni L., Aktas H., Edelstein H. 2010. Hormonal signaling in rootstock-scion interactions. Sci Hortic 127: 119-126. [Crossref]

  • Ashita E. 1927. Grafting of watermelons. Korea (Chosun) Agricultural Newsletter 1: 9. [in Japanese]

  • Barnett H. L., Hunter B. B. 1986. Illustrated genra of imperfect fungi. Macmillan Publishing Company. New York.

  • Biles C. L., Martyn R. D., Wilson H. D. 1989. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience. 24 (5): 810-812.

  • Booth C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey. United Kingdom.

  • Bruton B. D., Fish W. W., Roberts W., Popham T. W. 2009. The influence of rootstock selection on fruit quality attributes of watermelon. Open Food Sci. J. 3: 15-34.

  • Cohen R., Pivonia S., Burger Y., Edelstein M., Gamliel A., Katan J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. [Crossref]

  • Colla G., Suãrez C. M. C., Cardarelli M., Rouphael Y. 2010a. Improving nitrogen use efficiency in melon by grafting. HortScience 45: 559-565.

  • Colla G., Rouphael Y., Cardarelli M., Salerno A., Rea E. 2010b. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot. 68: 283-291. [Crossref]

  • Davis A. R., Perkins-Veazie P. 2005. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genet. Coop Rpt.: 28-29.

  • Davis A. R., Perkins-Veazie P., Hassell R., Levi A., King S. R., Zhang X. 2008a. Grafting effects on vegetable quality. HortScience 43: 1670-1672.

  • Davis A. R., Perkins-Veazie P., Sakata Y., Lpez-Galarza S., Maroto J. V., Lee S. G., et al. 2008b. Cucurbit grafting. Crit. Rev. Plant Sci. 27: 50-74. [Crossref]

  • Di Mascio P., Kaiser S., Sies H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biophys. 274: 532-538.

  • Dong H. H., Niu Y. H., Li W. J., Zhang D. M. 2008. Effects of cotton root-stock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J. Exp. Bot. 59: 1295-1304. [Crossref]

  • Dunoyer P., Brosnan C. A., Schott G., Wang Y., Jay F., Alioua A., Himber C., Voinnet O. 2010. An endogenous, systemic RNAi pathway in plants. Embryol. J. 29: 1699-1712. [PubMed]

  • El-Marzoky H. A., El-Sharkawy E. E. 2011. Pathological studies on Rhizoctonia damping off, root rot and Fusarium wlit of pepper in Egypt. Agric. Res. J. 11(1): 77-82.

  • El-Shami M. A. M. 1984. Studies on soil fungi which attacking cucurbits plants in Egypt. M.Sc. Thesis, Faculty of Agriculture, Ain Shams University, Egypt, pp. 126.

  • Fanasca S., Colla G., Rouphael Y., Saccardo F., Maiani G., Venneria E., Azzini E. 2006. Evolution of nutritional value of two tomato geno-types grown in soilless culture as affected by macrocation proportions. HortScience 41: 1584-1588.

  • FAOSTAT 2009. http://faostat.fao.org/site/567/default.aspx#ancor

  • Flores F. B., Sanchez-Bel P., Estañ M. T., Martinez-Rodriguez M. M., Moyano E., Morales B., et al. 2010. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 125: 211-217. [Crossref]

  • Grimault V., Gelie B., Lemattre M., Prior P., Schmit J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. Mol. Plant. Pathol. 44: 105-123. [Crossref]

  • Hadley C. W., Clinton S. K., Schwartz S. J. 2003. The consumption of processed tomato products enhances plasma lycopene concentrations in association with reduced lipoprotein sensitivity to oxidative damage. J. Nutr. 133: 727-732.

  • Han J. S., Park S., Shigaki T., Hirschi K. D., Kim C. K. 2009. Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Mol. Breed. 24: 201-211. [Crossref]

  • Harada T. 2010. Grafting and RNA transport via phloem tissue in horticultural plants. Sci. Hortic. 125: 545-550. [Crossref]

  • Hartmann H. T., Kester D. E., Davies F. T., Geneve R. L. 1997. Plant Propagation: Principles and Practices. Prentice Hall, Upper Saddle River, NJ, USA, pp. 770.

  • Hassell R. L., Memmott F. 2008. Grafting Methods for Watermelon Production. HortScience 43(6): 1677-1679.

  • He Y., Zhu Z., Yang J., Ni X., Zhu D. 2009. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp. Bot. 66: 270-278. [Crossref]

  • Huang Y., Bie Z., He S., Hu B., Zhen A., Liu Z. 2010. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 69: 32-38. [Crossref]

  • Huitrón-Ramírez M. V., Ricárdez-Salinas M., Camacho-Ferre F. 2009. Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience 44: 1838-1841.

  • Hussien M. N. 2011. Studies on grafting in some vegetable crops. M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Suez Canal University, Egypt.

  • Ioannou N. 2001. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hortic. Sci. Biotechnol. 7: 396-401.

  • King S. R., Davis A. R., Zhang X., Crosby K. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hortic. 127: 106-111. [Crossref]

  • Lee J. M. 1994. Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience 29: 235-239.

  • Liu H. Y., Zhu Z. J., Diao M., Guo Z. P. 2006. Characteristic of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiol. Commun. 42: 835-840.

  • Liu N., Zhou B., Zhao X., Lu B., Li Y., Hao J. 2009. Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortScience 44: 2058-2062.

  • Louws F. J., Rivard C. L., Kubota C. 2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 127: 127-146. [Crossref]

  • Martínez-Ballesta M. C., Alcaraz-López C., Muries B., Mota-Cadenas C., Carvajal M. 2010. Physiological aspects of rootstock-scion interactions. Sci. Hortic. 127: 112-118. [Crossref]

  • Martinez-Rodriguez M. M., Estañ M. T., Moyano E., Garcia-Abellan J. O., Flores F. B., Campos J. F., et al. 2008. The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ. Exp. Bot. 63: 392-401. [Crossref]

  • Miguel A., Maroto J. V., Bautista A. S., Baixauli C., Cebolla V., Pascual B., Lopez-Galarza S., Guardiola J. L. 2004. The grafting of triploid wa-termelon is an advantageous alternative to soil fumigation. Sci. Hortic. 103: 9-17. [Crossref]

  • Molnar A., Melnyk C. W., Bassett A., Hardcastle T. J., Dunn R., Baulcombe D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Sci. 328: 872-875.

  • Otani T., Seike N. 2007. Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32: 235-242. [Crossref]

  • Proietti S., Rouphael Y., Colla G., Cardarelli M., De Agazio M., Zacchini M., Moscatello S., Battistelli A. 2008. Fruit quality of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food. Agric. 88: 1107-1114. [Crossref]

  • Pulgar G., Villora G., Moreno D. A., Romero L. 2000. Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biol. Plant. 43: 607-609. [Crossref]

  • Qian Q. A., Liu H. Y., Zhu Z. J. 2004. Studies on sugar metabolism and related enzymes activity during watermelon fruit development as influenced by grafting. J. Zhejiang Univ. 30: 285-289.

  • Ranganna S. 1977. Manual of analysis of fruit and vegetable products. Tata Mcagaw hill Publishing Company Limited. New Delhi. India.

  • Rao A. V., Rao L. G. 2007. Carotenoids and human health. Pharmacol. Res. 55 (3): 207-216. [PubMed] [Crossref]

  • Ricàrdez-Salinas M., Huitr n-Ramírez M. V., Tello-Marquinac J. C., Camacho-Ferrec F. 2010. Planting density for grafted melon as an alternative to methyl bromide use in Mexico. Sci. Hortic. 126: 236-241 [Crossref]

  • Rivero R. M., Ruiz J. M., Romero L. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J Sci. Food Agric. 83: 1315-1319. [Crossref]

  • Rouphael Y., Cardarelli M., Colla G., Rea E. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 43: 730-736.

  • Rouphael Y., Schwarz D., Krumbein A., Colla G. 2010. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 127: 172-179. [Crossref]

  • Sakata Y., Ohara T., Sugiyama M. 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hortic. 731: 159-170.

  • Salam M. A., Masum A. S. M. H., Chowdhury S. S., Dhar M., Saddeque A., Islam M. R. 2002. Growth and yield of watermelon as influenced by grafting. J. Biol. Sci. 2: 298-299.

  • Salehi-Mohammadi R., Khasi A., Lee S. G., Huh Y. C., Lee J. M., Delshad M. 2009. Assessing survival and growth performance of Iranian melon to grafting onto Cucurbita root-stocks. Korean J. Hortic. Sci. Technol. 27(1): 1-6.

  • Savvas D., Colla G., Rouphael Y., Schwarz D. 2010. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci. Hortic. 127: 156-161. [Crossref]

  • Sesso H. D., Liu S., Gaziano J. M., Buring J. E. 2003. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 133: 2336-2341.

  • Statsoft Inc., 2001. STATISTICA für Windows [Software-system für Da-tenanalyse] Version 6. http://www.Statsoft.com

  • Venema J. H., Dijk B. E., Bax J. M., van Hasselt P. R., Elzenga J. T. M. 2008. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 63: 359-367. [Crossref]

  • Wu F. Z., Liu B., Zhou X. G. 2010. Effects of root exudates of watermelon cultivars differing in resistance to Fusarium wilt on the growth and development of Fusarium oxysporum f.sp niveum. Allelopath. J. 25: 403-413.

  • Yamasaki A., Yamashita M., Furuya S. 1994. Mineral concentrations and cytokinin activity in the xylem exudates of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 62: 817-826. [Crossref]

  • Yetisir H., Kurt S., Sar N., Tok F. M. 2007. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, graft compatibility, and resistance to Fusarium. Turk. J. Agric. For. 31: 381-388.

  • Yetisir H., Sari N. 2003. Effect of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 43: 1269-1274.

  • Zhang J., Shu W. S. 2006. Mechanisms of heavy metal cadmium tolerance in plants. J. Plant. Physiol. Mol. Biol. 32: 1-8.

About the article

Published Online: 2012-08-30

Published in Print: 2012-01-01

Citation Information: Vegetable Crops Research Bulletin, ISSN (Online) 1898-7761, ISSN (Print) 1506-9427, DOI: https://doi.org/10.2478/v10032-012-0007-0. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in