Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Vegetable Crops Research Bulletin

2 Issues per year

Open Access
Online
ISSN
1898-7761
See all formats and pricing
More options …

Impact of Grafting on Watermelon Growth, Fruit Yield and Quality

Fouad Mohamed
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khalid El-Hamed
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Elwan
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mennat-Allah Hussien
  • Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt 41522
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-30 | DOI: https://doi.org/10.2478/v10032-012-0007-0

Impact of Grafting on Watermelon Growth, Fruit Yield and Quality

Grafting is an alternative approach to reduce crop damage resulting from soil-borne pathogens and increases plant abiotic stress tolerance, which in turn increases crop production. The purpose of this study was to determine whether grafting could improve plant growth and fruit quality of watermelon through monitoring the changes induced by different rootstock-scion combinations. Watermelon (Citrullus lanatus) cv. Aswan F1 was grafted into five rootstocks (Nun 6001 F1, Strongtosa F1, Tetsukabuto F1, Ferro F1 and Shintoza F1) hybrids between Cucurbita maxima and Cucurbita moschata. Highest vegetative growth and fruit yield were obtained by ‘Nun 6001 F1’ as a rootstock using the tongue approach method. Grafting reduced significantly sex ratio by reducing the number of male flowers. Grafting increased significantly lycopene content in fruit flesh by 57% over the control treatment, but did not affect soluble solids content (SSC). One third of the control non-grafted plants died and Fusarium oxysporum was isolated as the responsible pathogen. These results indicate that grafting watermelon onto specific rootstock influences growth, productivity, and quality of the fruit as well as disease resistance. Grafting can be suggested as an alternative method to control of Fusarium wilt in watermelon production.

Wpływ Szczepienia Na Wzrost Roślin Oraz Plon I Jakość Owoców Arbuza

Szczepienie jest alternatywną metodą ograniczania szkód w uprawach rolnych powodowanych przez patogeny glebowe oraz zwiększa tolerancję roślin na stresy abiotyczne, co z kolei zwiększa wydajność upraw. Celem badań było ustalenie, czy szczepienie może poprawić wzrost roślin i jakość owoców arbuza poprzez monitorowanie zmian wywołanych przez różne kombinacje podkładkazraz. Arbuz (Citrullus lanatus) odm. Aswan F1 zaszczepiono na pięciu podkładkach (Nun 6001 F1, Strongtosa F1, Tet-sukabuto F1, Ferro F1 i Shintoza F1) mieszańców Cucurbita maxima i Cucurbita moschata. Największy wzrost wegetatywny i plon owoców uzyskano na podkładce Nun 6001 F1, stosując metodę szczepienia przez stosowanie z języczkiem. Szczepienie spowodowało istotny spadek stosunku płci poprzez zmniejszenie liczby kwiatów męskich. Szczepienie zwiększyło istotnie zawartość likopenu w miąższu owoców, o 57% w stosunku do kontroli, ale nie wpłynęło na zawartość rozpuszczalnych substancji stałych (ekstraktu). Jedna trzecia nieszczepionych roślin kontrolnych obumarła, za co odpowiedzialny był wyodrębniony patogen Fusarium oxysporum. Wyniki te wskazują, że szczepienie arbuza na określonej podkładce wpływa na wzrost, plonowanie i jakość owoców, a także na odporność na choroby. Szczepienie można zaproponować jako alternatywną metodę zapobiegania więdnięciu, powodowanemu przez grzyb Fusarium, w produkcji arbuza.

Keywords: grafting; Citrullus lanatus; rootstock; yield; lycopene content; Fusarium wilt

  • AOAC 1996. Official Methods of Analysis, 12th ed. Washington, DC: AOAC.Google Scholar

  • Abd El-Naby E. E. 2001. Studies on root rot and damping-off diseases of eggplants and pepper. M.Sc. Thesis, Faculty of Agriculture, Zagazig University, Egypt: pp. 156.Google Scholar

  • Ali M. A., Fahmi M. M., Mohamed R. O. 1972. On the breeding for resistnce of Fusarium wilt of watermelon. Egyptian J. Phytopathol. 4: 15-22.Google Scholar

  • Aloni B., Cohen R., Karni L., Aktas H., Edelstein H. 2010. Hormonal signaling in rootstock-scion interactions. Sci Hortic 127: 119-126.CrossrefGoogle Scholar

  • Ashita E. 1927. Grafting of watermelons. Korea (Chosun) Agricultural Newsletter 1: 9. [in Japanese]Google Scholar

  • Barnett H. L., Hunter B. B. 1986. Illustrated genra of imperfect fungi. Macmillan Publishing Company. New York.Google Scholar

  • Biles C. L., Martyn R. D., Wilson H. D. 1989. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience. 24 (5): 810-812.Google Scholar

  • Booth C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey. United Kingdom.Google Scholar

  • Bruton B. D., Fish W. W., Roberts W., Popham T. W. 2009. The influence of rootstock selection on fruit quality attributes of watermelon. Open Food Sci. J. 3: 15-34.Google Scholar

  • Cohen R., Pivonia S., Burger Y., Edelstein M., Gamliel A., Katan J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505.CrossrefGoogle Scholar

  • Colla G., Suãrez C. M. C., Cardarelli M., Rouphael Y. 2010a. Improving nitrogen use efficiency in melon by grafting. HortScience 45: 559-565.Google Scholar

  • Colla G., Rouphael Y., Cardarelli M., Salerno A., Rea E. 2010b. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot. 68: 283-291.CrossrefGoogle Scholar

  • Davis A. R., Perkins-Veazie P. 2005. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genet. Coop Rpt.: 28-29.Google Scholar

  • Davis A. R., Perkins-Veazie P., Hassell R., Levi A., King S. R., Zhang X. 2008a. Grafting effects on vegetable quality. HortScience 43: 1670-1672.Google Scholar

  • Davis A. R., Perkins-Veazie P., Sakata Y., Lpez-Galarza S., Maroto J. V., Lee S. G., et al. 2008b. Cucurbit grafting. Crit. Rev. Plant Sci. 27: 50-74.CrossrefGoogle Scholar

  • Di Mascio P., Kaiser S., Sies H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biophys. 274: 532-538.Google Scholar

  • Dong H. H., Niu Y. H., Li W. J., Zhang D. M. 2008. Effects of cotton root-stock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J. Exp. Bot. 59: 1295-1304.CrossrefGoogle Scholar

  • Dunoyer P., Brosnan C. A., Schott G., Wang Y., Jay F., Alioua A., Himber C., Voinnet O. 2010. An endogenous, systemic RNAi pathway in plants. Embryol. J. 29: 1699-1712.PubMedGoogle Scholar

  • El-Marzoky H. A., El-Sharkawy E. E. 2011. Pathological studies on Rhizoctonia damping off, root rot and Fusarium wlit of pepper in Egypt. Agric. Res. J. 11(1): 77-82.Google Scholar

  • El-Shami M. A. M. 1984. Studies on soil fungi which attacking cucurbits plants in Egypt. M.Sc. Thesis, Faculty of Agriculture, Ain Shams University, Egypt, pp. 126.Google Scholar

  • Fanasca S., Colla G., Rouphael Y., Saccardo F., Maiani G., Venneria E., Azzini E. 2006. Evolution of nutritional value of two tomato geno-types grown in soilless culture as affected by macrocation proportions. HortScience 41: 1584-1588.Google Scholar

  • FAOSTAT 2009. http://faostat.fao.org/site/567/default.aspx#ancor

  • Flores F. B., Sanchez-Bel P., Estañ M. T., Martinez-Rodriguez M. M., Moyano E., Morales B., et al. 2010. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 125: 211-217.CrossrefGoogle Scholar

  • Grimault V., Gelie B., Lemattre M., Prior P., Schmit J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. Mol. Plant. Pathol. 44: 105-123.CrossrefGoogle Scholar

  • Hadley C. W., Clinton S. K., Schwartz S. J. 2003. The consumption of processed tomato products enhances plasma lycopene concentrations in association with reduced lipoprotein sensitivity to oxidative damage. J. Nutr. 133: 727-732.Google Scholar

  • Han J. S., Park S., Shigaki T., Hirschi K. D., Kim C. K. 2009. Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Mol. Breed. 24: 201-211.CrossrefGoogle Scholar

  • Harada T. 2010. Grafting and RNA transport via phloem tissue in horticultural plants. Sci. Hortic. 125: 545-550.CrossrefGoogle Scholar

  • Hartmann H. T., Kester D. E., Davies F. T., Geneve R. L. 1997. Plant Propagation: Principles and Practices. Prentice Hall, Upper Saddle River, NJ, USA, pp. 770.Google Scholar

  • Hassell R. L., Memmott F. 2008. Grafting Methods for Watermelon Production. HortScience 43(6): 1677-1679.Google Scholar

  • He Y., Zhu Z., Yang J., Ni X., Zhu D. 2009. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp. Bot. 66: 270-278.CrossrefGoogle Scholar

  • Huang Y., Bie Z., He S., Hu B., Zhen A., Liu Z. 2010. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 69: 32-38.CrossrefGoogle Scholar

  • Huitrón-Ramírez M. V., Ricárdez-Salinas M., Camacho-Ferre F. 2009. Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience 44: 1838-1841.Google Scholar

  • Hussien M. N. 2011. Studies on grafting in some vegetable crops. M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Suez Canal University, Egypt.Google Scholar

  • Ioannou N. 2001. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hortic. Sci. Biotechnol. 7: 396-401.Google Scholar

  • King S. R., Davis A. R., Zhang X., Crosby K. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hortic. 127: 106-111.CrossrefGoogle Scholar

  • Lee J. M. 1994. Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience 29: 235-239.Google Scholar

  • Liu H. Y., Zhu Z. J., Diao M., Guo Z. P. 2006. Characteristic of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiol. Commun. 42: 835-840.Google Scholar

  • Liu N., Zhou B., Zhao X., Lu B., Li Y., Hao J. 2009. Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortScience 44: 2058-2062.Google Scholar

  • Louws F. J., Rivard C. L., Kubota C. 2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 127: 127-146.CrossrefGoogle Scholar

  • Martínez-Ballesta M. C., Alcaraz-López C., Muries B., Mota-Cadenas C., Carvajal M. 2010. Physiological aspects of rootstock-scion interactions. Sci. Hortic. 127: 112-118.CrossrefGoogle Scholar

  • Martinez-Rodriguez M. M., Estañ M. T., Moyano E., Garcia-Abellan J. O., Flores F. B., Campos J. F., et al. 2008. The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ. Exp. Bot. 63: 392-401.CrossrefGoogle Scholar

  • Miguel A., Maroto J. V., Bautista A. S., Baixauli C., Cebolla V., Pascual B., Lopez-Galarza S., Guardiola J. L. 2004. The grafting of triploid wa-termelon is an advantageous alternative to soil fumigation. Sci. Hortic. 103: 9-17.CrossrefGoogle Scholar

  • Molnar A., Melnyk C. W., Bassett A., Hardcastle T. J., Dunn R., Baulcombe D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Sci. 328: 872-875.Google Scholar

  • Otani T., Seike N. 2007. Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32: 235-242.CrossrefGoogle Scholar

  • Proietti S., Rouphael Y., Colla G., Cardarelli M., De Agazio M., Zacchini M., Moscatello S., Battistelli A. 2008. Fruit quality of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food. Agric. 88: 1107-1114.CrossrefGoogle Scholar

  • Pulgar G., Villora G., Moreno D. A., Romero L. 2000. Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biol. Plant. 43: 607-609.CrossrefGoogle Scholar

  • Qian Q. A., Liu H. Y., Zhu Z. J. 2004. Studies on sugar metabolism and related enzymes activity during watermelon fruit development as influenced by grafting. J. Zhejiang Univ. 30: 285-289.Google Scholar

  • Ranganna S. 1977. Manual of analysis of fruit and vegetable products. Tata Mcagaw hill Publishing Company Limited. New Delhi. India.Google Scholar

  • Rao A. V., Rao L. G. 2007. Carotenoids and human health. Pharmacol. Res. 55 (3): 207-216.PubMedCrossrefGoogle Scholar

  • Ricàrdez-Salinas M., Huitr n-Ramírez M. V., Tello-Marquinac J. C., Camacho-Ferrec F. 2010. Planting density for grafted melon as an alternative to methyl bromide use in Mexico. Sci. Hortic. 126: 236-241CrossrefGoogle Scholar

  • Rivero R. M., Ruiz J. M., Romero L. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J Sci. Food Agric. 83: 1315-1319.CrossrefGoogle Scholar

  • Rouphael Y., Cardarelli M., Colla G., Rea E. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 43: 730-736.Google Scholar

  • Rouphael Y., Schwarz D., Krumbein A., Colla G. 2010. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 127: 172-179.CrossrefGoogle Scholar

  • Sakata Y., Ohara T., Sugiyama M. 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hortic. 731: 159-170.Google Scholar

  • Salam M. A., Masum A. S. M. H., Chowdhury S. S., Dhar M., Saddeque A., Islam M. R. 2002. Growth and yield of watermelon as influenced by grafting. J. Biol. Sci. 2: 298-299.Google Scholar

  • Salehi-Mohammadi R., Khasi A., Lee S. G., Huh Y. C., Lee J. M., Delshad M. 2009. Assessing survival and growth performance of Iranian melon to grafting onto Cucurbita root-stocks. Korean J. Hortic. Sci. Technol. 27(1): 1-6.Google Scholar

  • Savvas D., Colla G., Rouphael Y., Schwarz D. 2010. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci. Hortic. 127: 156-161.CrossrefGoogle Scholar

  • Sesso H. D., Liu S., Gaziano J. M., Buring J. E. 2003. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 133: 2336-2341.Google Scholar

  • Statsoft Inc., 2001. STATISTICA für Windows [Software-system für Da-tenanalyse] Version 6. http://www.Statsoft.com

  • Venema J. H., Dijk B. E., Bax J. M., van Hasselt P. R., Elzenga J. T. M. 2008. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 63: 359-367.CrossrefGoogle Scholar

  • Wu F. Z., Liu B., Zhou X. G. 2010. Effects of root exudates of watermelon cultivars differing in resistance to Fusarium wilt on the growth and development of Fusarium oxysporum f.sp niveum. Allelopath. J. 25: 403-413.Google Scholar

  • Yamasaki A., Yamashita M., Furuya S. 1994. Mineral concentrations and cytokinin activity in the xylem exudates of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 62: 817-826.CrossrefGoogle Scholar

  • Yetisir H., Kurt S., Sar N., Tok F. M. 2007. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, graft compatibility, and resistance to Fusarium. Turk. J. Agric. For. 31: 381-388.Google Scholar

  • Yetisir H., Sari N. 2003. Effect of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 43: 1269-1274.Google Scholar

  • Zhang J., Shu W. S. 2006. Mechanisms of heavy metal cadmium tolerance in plants. J. Plant. Physiol. Mol. Biol. 32: 1-8.Google Scholar

About the article


Published Online: 2012-08-30

Published in Print: 2012-01-01


Citation Information: Vegetable Crops Research Bulletin, ISSN (Online) 1898-7761, ISSN (Print) 1506-9427, DOI: https://doi.org/10.2478/v10032-012-0007-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Evangelia Avramidou, Aliki Kapazoglou, Filippos A. Aravanopoulos, Aliki Xanthopoulou, Ioannis Ganopoulos, Aphrodite Tsaballa, Panagiotis Madesis, Andreas G. Doulis, and Athanasios Tsaftaris
Crop Breeding and Applied Biotechnology, 2015, Volume 15, Number 2, Page 112
[2]
M. López-Gómez, M. Talavera, and S. Verdejo-Lucas
Plant Pathology, 2016, Volume 65, Number 1, Page 145
[3]
Selçuk Özmen, Rıza Kanber, Nebahat Sarı, and Mustafa Ünlü
Journal of Integrative Agriculture, 2015, Volume 14, Number 5, Page 966

Comments (0)

Please log in or register to comment.
Log in