Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Vegetable Crops Research Bulletin

2 Issues per year

Open Access
Online
ISSN
1898-7761
See all formats and pricing
More options …

The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato Under Salinity Stress

Maryam Haghighi
  • Horticulture Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zahra Afifipour / Maryam Mozafarian
Published Online: 2012-08-30 | DOI: https://doi.org/10.2478/v10032-012-0008-z

The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato Under Salinity Stress

This study was conducted to evaluate the effectiveness of silicon (Si) application under salinity levels on seed germination and growth characteristics of tomato seeds. A laboratory experiment was performed on completely randomized design with two levels of salinity (25 and 50 mM NaCl) and 2 concentration of Si (1 and 2 mM) with 4 replications. Germination percentage, germination rate, seedling shoot and root length, fresh and dry weight of seedling and mean germination time was measured. Seed germination of Lycopersicon esculentum L. was significantly affected by salinity levels, Si and their interaction. Germination characteristics of tomato seeds decreased drastically by increasing NaCl concentrations. However, 1 mM Si had positive effects on seed germination characteristics and improved germination percentage, germination rate and mean germination time. Si alleviated the harmful effect of salinity stress on tomato seed germination at almost all germination characteristics.

Pozytywny Wpływ Krzemu Na Kiełkowanie Nasion I Wzrost Siewek Pomidora W Warunkach Stresu Zasolenia

Badania przeprowadzono w celu oceny skuteczności stosowania krzemu (Si) w warunkach zasolenia na kiełkowanie nasion i cechy wzrostu siewek pomidora. Wykonano doświadczenie laboratoryjne w układzie kompletnie losowym z dwoma poziomami zasolenia (25 i 50 mM NaCl) i dwoma stężeniami Si (1 i 2 mM) w 4 powtórzeniach. Określano procent kiełkowania, zdolność kiełkowania, długość pędu i korzenia siewek, świeżą i suchą masę siewek oraz średni czas kiełkowania. Na kiełkowanie nasion Lycopersicon esculentum L. w istotny sposób oddziaływały poziomy zasolenia, krzem i ich interakcja. Kiełkowanie nasion pomidora zmniejszało się znacznie w miarę zwiększania stężenia NaCl. Dodatek 1 mM Si miał pozytywny wpływ na kiełkowanie, zwiększając procent skiełkowanych nasion, zdolność kiełkowania i średni czas kiełkowania. Si łagodził szkodliwy wpływ stresu zasolenia na kiełkowanie nasion pomidora pod względem niemal wszystkich parametrów związanych z kiełkowaniem.

Keywords: vigor index; germination percentage; germination rate; Si; tomato

  • Adatia M. H., Besford R. T. 1986.The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58: 343-351.Google Scholar

  • Barcelo J., Guevara P., Poschenrieder Ch. 1993. Silicon amelioration of aluminum toxicity in teosinte (Zea mays L. ssp. Mexicana). Plant Soil. 154: 249-255.Google Scholar

  • Cao Y. 2010. Effects of NaCl stress on seed germination of Lepidium latifolium. Modern Agricu. Sci. Technol. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ANHE201001071.htm http://en.cnki.com.cn/Article_en/CJFDTOTAL-ANHE201001071.htm

  • Cuartero J., Fernandez-Munoz R. 1999. Tomato and salinity. Sci. Hort. 78: 83-125.Google Scholar

  • Dayou C. 1996. Germination of sugarbeet seed under stress of sodium chloride. Chinese J. Diabetes. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTI602.005.htm http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTI602.005.htm

  • Epstein E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-664.Google Scholar

  • Etemadi N., Haghighi M., Nikbakht A., Zamani N. 2010. Methods to promote germination of Kelussia odoratissima Mozaff., an Iranian endemic medicinal plant. Herba Polinica 72: 49-61.Google Scholar

  • Gapińska M., Skłodowska M., Gabara B. 2008. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid proxidation in tomato root. Acta Physiol. Plant. 30:11-18.Web of ScienceGoogle Scholar

  • Gol D. 2009. Physiological and genetic characterization of salt tolerance in tomato (Lycopersicon esculentum). M. Sc. Thesis. The graduate school of engineering and science of Izmir Institute of Technology. Izmir. Turkey.Google Scholar

  • Hammond K. E., Evans D. E., Hodson M. J. 1995. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil. 173: 89-95.Google Scholar

  • Horst W. J., Marschner H. 1978. Effects of silicon on manganese tolerance in cowpea (Vigna unguiculata). Plant Soil 50: 287-303.Google Scholar

  • Iwasaki K., Meier P., Fecht M., Horst W. J. 2002. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238: 281-288.Google Scholar

  • Jamil A., Naim S., Ahmed S., Ashraf M. 2005. Production of Industrially important enzymes using molecular approaches; cellulases and xylanases. In: Genetic resources and Biotechnology II, Volume 2, (D. Thangadurai, T. Pullaiah, Pedro A. Balatti. Eds.): Regency publications, New Delhi.Google Scholar

  • Jing-jun L., Qiang L., Li-an D. 2002. Eddect of salt stress on seed germination of Lolium perenne L. and Festuca elatakeng. Bulletin Botan. Research. 22: 328-332.Google Scholar

  • Lee S. K., Sohn E. Y., Hamayun M., Yoon L. Y., Lee I. J. 2010. Effects of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Syst. 80: 333-430.Web of ScienceGoogle Scholar

  • Li Q., Ma C., Li H., Xiao Y., Liu X. 2004. Effects of soil available silicon on growth, development and physiological function of soy bean. National Institutes of Health, 15: 73-76.Google Scholar

  • Liu C., Li F., Luo C., Liu X., Wang S., Liu T., Li X. 2009. Foliar application of two silica sols reduced cadmium accumulation in race grains. J. Hazard. Mater. 161: 1466-1472.Web of ScienceGoogle Scholar

  • Menzies J. G., Ehret D. L., Glass A. D. M., Helmer T., Koch C., Seywerd F. 1991. The effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginia on Cucumis sativus. Phytopathology 81: 84-88.Google Scholar

  • Savvas D., Passam H. C. 2002. Nutrient solution recycling In Hydroponic Production of Vegetables and Ornamentals. Embry Publications, Athens, Greece: 299-343.Google Scholar

  • Simon E. W. 1984. Early events in germination. Seed Physiol. 2:77-115.Google Scholar

  • Stamatakis A., Papadantonakis N., Lydakis-Simantiis N., Kefalas P. 2003. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort. 609: 141-148.Google Scholar

  • Sun Y., Luo W., Zhang W., Ziumei X. 2010. Effects of exogenous silicon on germination characteristics of cucumber seeds under NaHCO3 stress. International Conference on Challenges in Environmental Science and Computer Engineering. 1: 471-474.Google Scholar

  • Wang X. D., Ou-yang C., Fan Z., Gao S., Chen F., Tang L. 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activi-ties of Momordica charantia under salt stress. J. Animal & Plant Sci. 6: 700-708.Google Scholar

  • Wang X., Wei Z., Liu D., Zhao G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African J. Biotech. 10: 545-549.Google Scholar

  • Xiao-fang S., Qing-song Z., You-liang L. 2000. Salinity injury to germination and growth of cotton (Gossypium hirsutum L.) at emergence and seedling stages. J. Plant Res. Environ. 9: 22-25.Google Scholar

  • Yong Y., Nora Fung-Yee T., Chang-Yi L., Yuk-Shan W. 2005. Effects of salinity on germination, seedling growth and physiology of three saltsecreting mangrove species. Aquat. Bot. 83: 193-205.Google Scholar

  • Zuccarini P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plantarum 52:157-160.Google Scholar

About the article


Published Online: 2012-08-30

Published in Print: 2012-01-01


Citation Information: Vegetable Crops Research Bulletin, ISSN (Online) 1898-7761, ISSN (Print) 1506-9427, DOI: https://doi.org/10.2478/v10032-012-0008-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Xilong Liang, Shumei Fang, Weibo Ji, and Dianfeng Zheng
Communications in Soil Science and Plant Analysis, 2015, Volume 46, Number 17, Page 2127

Comments (0)

Please log in or register to comment.
Log in