Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Waves, Wavelets and Fractals

1 Issue per year

Open Access
Online
ISSN
2449-5557
See all formats and pricing
More options …

Haar wavelet method for vibration analysis of nanobeams

M. Kirs / M. Mikola / A. Haavajõe / E. Õunapuu / B. Shvartsman
  • Corresponding author
  • Estonian Entrepreneurship University of Applied Sciences, Suur-Sõjamäe 10, Tallinn, Estonia, 11415
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Majak
Published Online: 2016-04-26 | DOI: https://doi.org/10.1515/wwfaa-2016-0003

Abstract

In the current study the Haar wavelet method is adopted for free vibration analysis of nanobeams. The size-dependent behavior of the nanobeams, occurring in nanostructures, is described by Eringen nonlocal elasticity model. The accuracy of the solution is explored. The obtained results are compared with ones computed by finite difference method. The numerical convergence rates determined are found to be in agreement with corresponding convergence theorems.

Keywords: Haar wavelet method; nonlocal elasticity; nanobeams; Richardson extrapolation

References

  • [1] Aksencer T., Aydogdu M., Forced transverse vibration of nanoplates using nonlocal elasticity, Physica E 2012, 44, 1752–1759 Web of ScienceGoogle Scholar

  • [2] Ansari R., Pourashraf T., Gholam R., An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory, Thin-Walled Struct., 2015, 93, 169–176 Google Scholar

  • [3] Aydogdu M., A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 2009, 41, 1651–1655 Web of ScienceGoogle Scholar

  • [4] Aydogdu M., Elishakoff I., On the vibration of nanorods restrained by a linear spring in-span, Mech. Res. Com., 2014, 57, 90–96. Google Scholar

  • [5] Aydogdu M., Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Com. 2012, 43, 34–40 CrossrefGoogle Scholar

  • [6] Aziz I., Islam SU., Khana F., A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 2014, 272, 70–80 Web of ScienceGoogle Scholar

  • [7] Aziz I., Islam SU., New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 2013, 239(1), 333–345 Web of ScienceGoogle Scholar

  • [8] Behera L., Chakraverty S., Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories, Comput. Math. App., 2015, 69, 1444–1462. Google Scholar

  • [9] Castro LMS., Ferreira AJM., Bertoluzza S., Batra RC., Reddy JN., A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory, Compos. Struct., 2010, 92(8), 1786–1792 Web of ScienceCrossrefGoogle Scholar

  • [10] Cattani C., Harmonic wavelets toward the solution of nonlinear PDE, Comput. Math. Appl., 2005, 50, 1191–1210 Google Scholar

  • [11] Chakraverty S., Behera L., Free vibration of rectangular nanoplates using Rayleigh-Ritz method, Physica E, 2014, 56, 357–363 Web of ScienceGoogle Scholar

  • [12] Chen CF., Hsiao CH., Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Contr. Theor. Appl., 1997, 144(1), 87–94 Google Scholar

  • [13] Eltaher MA., Emam S.A., Mahmoud FF., Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 2013, 96, 82–88 Web of ScienceGoogle Scholar

  • [14] Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. App. Phys., 1983, 54, 4703–4710 Google Scholar

  • [15] Hariharan G., Kannan K., Review of wavelet methods for the solution of reaction-diffusion problems in science and Engineering, Appl. Math. Model. 2014, 38(3), 799–813 CrossrefWeb of ScienceGoogle Scholar

  • [16] Hein H., Feklistova L., Computationally eflcient delamination detection in composite beams using Haar wavelets, Mech. Syst. Signal. Pr., 2011, 25(6), 2257–2270 CrossrefGoogle Scholar

  • [17] Heydari MH., Hooshmandasl MR., Mohammadi F., Cattani, C., Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1), 37–48 Google Scholar

  • [18] Hsiao CH., A Haar wavelets method of solving differential equations characterizing the dynamics of a current collection system for an electric locomotive, Appl. Math. Comp., 2015, 265, 928–935 Google Scholar

  • [19] Jin G., Xie X., Liu Z., The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Compos. Struct. 2014, 108, 435–448 Web of ScienceGoogle Scholar

  • [20] Jin G., Xie X., Liu Z., Free vibration analysis of cylindrical shells using the Haar wavelet method, Int. J. Mech. Sci. 2013, 77, 47–56 Web of ScienceGoogle Scholar

  • [21] Lepik Ü., Numerical solution of differential equations using Haar wavelets, Math. Comput. Simulat., 2005, 68, 127–143 Google Scholar

  • [22] Lepik Ü., Solving PDEs with the aid of two dimensional Haar wavelets, Comput. Math. Appl., 2011, 61, 1873–1879 Web of ScienceGoogle Scholar

  • [23] Lepik Ü., Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. Comput., 2007, 185, 695–704 Web of ScienceGoogle Scholar

  • [24] Lepik Ü., Application of the Haar wavelet transform to solving integral and differential Equations, Proc. Est. Acad. Sci. Phys. Math., 2007, 56(1), 28–46 Google Scholar

  • [25] Lepik Ü., Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput., 2006, 176, 324–333 Google Scholar

  • [26] Lepik Ü., Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput., 2009, 214(2), 468–478 Web of ScienceGoogle Scholar

  • [27] Lepik Ü., Hein H., Application of the Haar wavelet method for solution the problems of mathematical calculus, Waves Wavelets Fractals, Adv. Anal., 2015, 1, 1–16 Google Scholar

  • [28] Lepik Ü., Hein H., Haar wavelets: with applications, New York, Springer, 2014 Google Scholar

  • [29] Majak J., Pohlak M., Eerme M., Application of the Haar Wavelet-based discretization technique to problems of orthotropic plates and shells, Mech. Compos. Mater., 2009, 45(6), 631–642 CrossrefWeb of ScienceGoogle Scholar

  • [30] Majak J., Pohlak M., Eerme M., Lepikult T., Weak formulation based Haar wavelet method for solving differential equations, Appl. Math. Comput. 2009, 211(2), 488–494 Web of ScienceGoogle Scholar

  • [31] Majak J., Shvartsman, BS., Kirs M., Pohlak M., Herranen H., Compos. Struct., 2015, 126, 227–232 Google Scholar

  • [32] Majak J., Shvartsman BS., Karjust K., Mikola M., Haavajõe A., Pohlak, M., Composites Part B:Engineering, 2015, 80, 321–327 Google Scholar

  • [33] Malekzadeh P., Shojaee M., Free vibration of nanoplates based on a nonlocal two-variable refined plate theory, Compos. Struct., 2013, 95, 443–452 Web of ScienceGoogle Scholar

  • [34] Malekzadeh P., Setoodeh AR., Beni AA., Small scale effect on the free vibration of orthotropic arbitrary straight sided quadrilateral nanoplates, Compos., Struct., 2011, 93(7), 1631–1639 Web of ScienceCrossrefGoogle Scholar

  • [35] Marchuk GI., Shaidurov VV., Difference Methods and Their Extrapolations, Springer, Berlin, 1983 Google Scholar

  • [36] Patra A., Ray SS., A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Ann. Nucl. Energy, 2014, 68, 112–117 Web of ScienceGoogle Scholar

  • [37] Ravari MRK., Shahidi AR., Axisymmetric buckling of the circular annular nanoplates using finite difference method, Meccanica, 2013, 48(1), 135–144 Web of ScienceCrossrefGoogle Scholar

  • [38] Ray SS., Patra A., Numerical simulation based on Haar wavelet operational method to solve neutron point kinetics equation involving sinusoidal and pulse reactivity, Ann. Nucl. Energy, 2014, 73, 408–412 Web of ScienceGoogle Scholar

  • [39] Ray SS., Patra A., Numerical simulation for fractional order stationary neutron transport equation using Haar wavelet collocation method, Nucl. Eng. Des., 2014, 278, 71–85 Web of ScienceGoogle Scholar

  • [40] Ray SS., Patra A., Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium, Ann. Nucl. Energy, 2014, 70, 30–35 Web of ScienceCrossrefGoogle Scholar

  • [41] Ray SS., Patra A., Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system, Appl. Math. Comput., 2013, 220, 659–667 Web of ScienceGoogle Scholar

  • [42] Reddy JN., El-Borgi S., Romanoff J., Non-linear analysis of functionally graded microbeams using Eringen’s non-local differential model, Int. J. Non-Lin. Mech., 2014, 67, 308–318 Google Scholar

  • [43] Saeed U., Rejman M., Iqubal MA., Haar wavelet-Picard technique for fractional order nonlinear initial and boundary value problems, Sci. Res. Essays. 2014, 9(12), 571–580 CrossrefGoogle Scholar

  • [44] Saeedi H., Mollahasani N., Moghadam M., Chuev G., An operational Haar wavelet method for solving fractional Volterra integral equations, Int. J. Appl. Math. Comput. Sci. 2011, 21(3), 535–547 CrossrefWeb of ScienceGoogle Scholar

  • [45] Shvartsman BS.,Majak J., Numerical method for stability analysis of functionally graded beams on elastic foundation, Appl. Math. Mod., 40 (4–5), 3713–3719 CrossrefGoogle Scholar

  • [46] Xie X., Jin G., Li W., Liu Z., A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures, Compos. Struct., 2014, 111, 20–30 Web of ScienceGoogle Scholar

  • [47] Xie X., Jin G., Yan Y., Shi SX., Liu Z., Free vibration analysis of composite laminated cylindrical shells using the Haar wavelet method, Compos. Struct., 2014, 109, 169–177 Web of ScienceGoogle Scholar

  • [48] Xie X., Jin G., Ye T., Liu Z., Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method, Appl. Acoust., 2014, 85, 130–142 Web of ScienceGoogle Scholar

About the article

Received: 2016-01-29

Accepted: 2016-02-29

Published Online: 2016-04-26


Citation Information: Waves, Wavelets and Fractals, Volume 2, Issue 1, ISSN (Online) 2449-5557, DOI: https://doi.org/10.1515/wwfaa-2016-0003.

Export Citation

© 2016 M. Kirs et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Muhammad Ahsan, Siraj-ul-Islam, and Iltaf Hussain
Inverse Problems in Science and Engineering, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in