Jump to ContentJump to Main Navigation
Show Summary Details

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR increased in 2015: 2.560
Rank 8 out of 26 in category Cristallography in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.827
Source Normalized Impact per Paper (SNIP) 2015: 1.198
Impact per Publication (IPP) 2015: 1.834

See all formats and pricing


Select Volume and Issue


Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction

C.C. Wilson
Published Online: 2009-09-25 | DOI: https://doi.org/10.1524/zkri.2000.215.11.693

The crystal and molecular structure of paracetamol (p-hydroxyacetanilide) has been determined by single crystal neutron diffraction at seven temperatures between 20 and 330 K. Short data collection times were used in this neutron study, with the fastest data set collected in just 5.5 hours, the longest in 11 hours. The structure is monoclinic, P21/a, Z=4, with unit cell parameters over the temperature range 20-330K ranging from a=12.667(4)-12.872(3), b=9.166(3)-9.370(2), c=7.073(3)-7.085(2) Å, β=115.51(2)-115.62(2)°, V=741.2-770.5 Å3. The molecular geometry and hydrogen bonding are briefly discussed, along with the variation with temperature of non-bonded contacts. The refined anisotropic thermal displacement parameters in the structure are analysed using the TLS approach at each temperature, including those for the hydrogen atoms which are well determined in this neutron study. The large torsional motions of the terminal methyl groups are found to be adequately modelled within the harmonic approximation for atomic vibrations, and show values for the mean square torsional amplitude in the range 170 deg2 to 930 deg2, but with a large residual zero-point motion, whose lower limit is estimated as 120 deg2. The variable temperature experiment is also shown to be useful in estimating bond length corrections due to thermal vibration effects and an empirical approach for doing this is introduced in this work. Application of this empirical correction leads to an estimate for the unshortened C-H bond lengths of 1.103 Å.

Published Online: 2009-09-25

Published in Print: 2000-11-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials. Volume 215, Issue 11, Pages 693–701, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1524/zkri.2000.215.11.693, September 2009

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kapil Adhikari, Kenneth M. Flurchick, and Loredana Valenzano
Chemical Physics Letters, 2015, Volume 621, Page 109
D. A. Druzhbin, T. N. Drebushchak, V. S. Min’kov, and E. V. Boldyreva
Journal of Structural Chemistry, 2015, Volume 56, Number 2, Page 317
Niina Jalarvo, Olivier Gourdon, Georg Ehlers, Madhusudan Tyagi, Sanat K. Kumar, Kerwin D. Dobbs, Robert J. Smalley, William E. Guise, Anibal Ramirez-Cuesta, Christoph Wildgruber, and Michael K. Crawford
The Journal of Physical Chemistry C, 2014, Volume 118, Number 10, Page 5579
Spencer J. Smith, Matthew M. Bishop, Jeffrey M. Montgomery, Tracy P. Hamilton, and Yogesh K. Vohra
The Journal of Physical Chemistry A, 2014, Page 140724135320000
Nikolaos Tsapatsaris, Boris A. Kolesov, Jennifer Fischer, Elena V. Boldyreva, Luke Daemen, Juergen Eckert, and Heloisa N. Bordallo
Molecular Pharmaceutics, 2014, Volume 11, Number 3, Page 1032
James K. Harper, Robbie Iuliucci, Matthew Gruber, and Keyton Kalakewich
CrystEngComm, 2013, Volume 15, Number 43, Page 8693
Nikolaos Tsapatsaris, Sven Landsgesell, Michael M. Koza, Bernhard Frick, Elena V. Boldyreva, and Heloisa N. Bordallo
Chemical Physics, 2013, Volume 427, Page 124
M. Ahmed, C. Jelsch, B. Guillot, C. Lecomte, and S. Domagała
Crystal Growth & Design, 2013, Volume 13, Number 1, Page 315
Vijay K. Srirambhatla, Arno Kraft, Stephen Watt, and Anthony V. Powell
Crystal Growth & Design, 2012, Volume 12, Number 10, Page 4870
Heloisa N. Bordallo, Boris A. Zakharov, Elena V. Boldyreva, Mark R. Johnson, Michael Marek Koza, Tilo Seydel, and Jennifer Fischer
Molecular Pharmaceutics, 2012, Volume 9, Number 9, Page 2434
Vânia André, M. Fátima M. da Piedade, and M. Teresa Duarte
CrystEngComm, 2012, Volume 14, Number 15, Page 5005
Igor E. Paukov, Yulia A. Kovalevskaya, Alexei E. Arzamastcev, Natalia A. Pankrushina, and Elena V. Boldyreva
Journal of Thermal Analysis and Calorimetry, 2012, Volume 108, Number 1, Page 243
Elena V Boldyreva
Journal of Molecular Structure, 2003, Volume 647, Number 1-3, Page 159
Volker L. Deringer, Veronika Hoepfner, and Richard Dronskowski
Crystal Growth & Design, 2012, Volume 12, Number 2, Page 1014
E. J. Chan and D. J. Goossens
Acta Crystallographica Section B Structural Science, 2012, Volume 68, Number 1, Page 80
Tonglei Li, Hong Wen, Kinam Park, and Kenneth R. Morris
Crystal Growth & Design, 2002, Volume 2, Number 3, Page 185
Chick C Wilson
Chemical Physics Letters, 2002, Volume 362, Number 3-4, Page 249
Partha Pratim Bag, Mohit Patni, and C. Malla Reddy
CrystEngComm, 2011, Volume 13, Number 19, Page 5650
Lynne H. Thomas, Craig Wales, Lihua Zhao, and Chick C. Wilson
Crystal Growth & Design, 2011, Volume 11, Number 5, Page 1450
Chick C. Wilson
Zeitschrift für Kristallographie, 2005, Volume 220, Number 4/2005
John R.G. Sander, Dejan-Krešimir Bučar, Rodger F. Henry, Jonas Baltrusaitis, Geoff G.Z. Zhang, and Leonard R. MacGillivray
Journal of Pharmaceutical Sciences, 2010, Page n/a
Ricardo Picciochi, Hermínio P. Diogo, and Manuel E. Minas da Piedade
Journal of Thermal Analysis and Calorimetry, 2010, Volume 100, Number 2, Page 391
Shyam Karki, Tomislav Friščić, László Fábián, Peter R. Laity, Graeme M. Day, and William Jones
Advanced Materials, 2009, Volume 21, Number 38–39, Page 3905
Marcus Aurelius Neumann and Marc-Antoine Perrin
CrystEngComm, 2009, Volume 11, Number 11, Page 2475
Marc-Antoine Perrin, Marcus A. Neumann, Hagit Elmaleh, and Lionel Zaske
Chemical Communications, 2009, Number 22, Page 3181
Birger Dittrich, John E. Warren, Francesca P. A. Fabbiani, Wolfgang Morgenroth, and Ben Corry
Physical Chemistry Chemical Physics, 2009, Volume 11, Number 15, Page 2601
Philippe Espeau, Ren� C�olin, Josep-Lluis Tamarit, Marc-Antoine Perrin, Jean-Pierre Gauchi, and Franck Leveiller
Journal of Pharmaceutical Sciences, 2005, Volume 94, Number 3, Page 524

Comments (0)

Please log in or register to comment.