Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2017: 2.65

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 229, Issue 11

Issues

Crystallography between Kiel and St. Petersburg: review of collaboration and the crystal structure of [Tl5(SiO4)(OH)]2[Tl6(SO4)(OH)4]

Oleg I. Siidra
  • Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey N. Britvin
  • Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
  • Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey V. Krivovichev
  • Corresponding author
  • Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
  • Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry A. Klimov
  • Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wulf Depmeier
Published Online: 2014-11-05 | DOI: https://doi.org/10.1515/zkri-2014-1760

Abstract

In this contribution, we briefly review the results of collaborative research between crystallography groups in St. Petersburg and Kiel, and report on the synthesis and crystal structure of Tl16(SiO4)2(SO4)(OH)6 (1), a new and unusual compound obtained from highly-alkaline TlOH solution. Its structure [monoclinic, C2/m, a = 28.7140(18), b = 7.3686(5), c = 7.4426(5) Å, β = 104.653(2)°, V = 1523.50(17) Å3, R1 = 0.066 for 1528 independent observed reflections] can be described as an alternation of electroneutral [Tl5(SiO4)(OH)] and [Tl3(SO4)0.5(OH)2] layers. The [Tl5(SiO4)(OH)] layer consists of Tl(1)O4 tetragonal pyramids sharing common corners with the SiO4 tetrahedra to form pseudotetragonal [Tl(SiO4)]3- layers capped by OH(1)-centered [(OH)Tl4] square pyramids with the Tl(2) and Tl(3) atoms in their apices. The [Tl3(SO4)0.5(OH)2] layers contain OH(2)- and OH(3)-centered [(OH)Tl4] square pyramids sharing common edges to form large (∼ 7.4 × 7.4 Å) cavities occupied by disordered (SO4) tetrahedra. The electroneutral character of the [Tl5(SiO4)(OH)] and [Tl6(SO4)(OH)4] layers allows us to suggest that the phases with these chemical compositions may form as independent compounds in highly alkaline Tl-bearing systems.

Keywords: collaboration; crystallography; crystal structure; lone pair of electrons; thallium

References

  • [1]

    S. V. Krivovichev, S. K. Filatov, T. F. Semenova, On the systematics and description of polyions of linked polyhedra. Z. Kristallogr. 1997, 212, 411.Google Scholar

  • [2]

    S. V. Krivovichev, S. K. Filatov, T. F. Semenova, I. V. Rozhdestvenskaya, Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra-I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Z. Kristallogr. 1998, 213, 645.Google Scholar

  • [3]

    G. L. Starova, S. V. Krivovichev, S. K. Filatov, Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu4O2[(As,V)O4]Cl. Z. Kristallogr. 1998, 213, 650.Google Scholar

  • [4]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, K. Knorr, Complex topology of uranyl polyphosphate frameworks: Crystal structures of α-, β-K[(UO2)(P3O9)] and K[(UO2)2(P3O10)]. Z. Anorg. Allg. Chem. 2008c, 634, 1527.Google Scholar

  • [5]

    E. V. Alekseev, S. V. Krivovichev, T. Malcherek, W. Depmeier, Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. I. Polymorphism and structure topology: Synthesis and crystal structures of α-Li[(UO2)(PO4)], α-Li[(UO2)(AsO4)], β-Li[(UO2)(AsO4)] and Li2[(UO2)3(P2O7)2]. J. Solid State Chem. 2008d, 181, 3010.Google Scholar

  • [6]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. II. Tubular fragments and cation-cation interactions in the 3D framework structures of Li6[(UO2)12(PO4)8(P4O13)], Li5[(UO2)13(AsO4)9(As2O7)], Li[(UO2)4(AsO4)3] and Li3[(UO2)7(AsO4)5O)]. J. Solid State Chem. 2009a, 182, 2977.Google Scholar

  • [7]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Rubidium uranyl phosphates and arsenates with polymeric tetrahedral anions: Syntheses and structures of Rb4[(UO2)6(P2O7)4(H2O)], Rb2[(UO2)3(P2O7)(P4O12)] and Rb[(UO2)2(As3O10)]. J. Solid State Chem. 2009b, 182, 2074.Google Scholar

  • [8]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, K2[(UO2)As2O7]-The first uranium polyarsenate. Z. Anorg. Allg. Chem. 2007b, 633, 1125.Google Scholar

  • [9]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Crystal structure of [CH3NH3][(UO2)(H2AsO4)3]. Radiochem. 2008a, 50, 445.CrossrefGoogle Scholar

  • [10]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Novel layered uranyl arsenates, Ag6[(UO2)2(As2O7)(As4O13)] and AI6[(UO2)2(AsO4)2(As2O7)] (AI - Ag and Na): First observation of a linear As4O136- anion and structure type evolution. J. Mater. Chem. 2009c, 19, 2583.CrossrefGoogle Scholar

  • [11]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Structural complexity of barium uranyl arsenates: Synthesis, structure, and topology of Ba4[(UO2)2(As2O7)3], Ba3[(UO2)2(AsO4)2(As2O7)], and Ba5Ca[(UO2)8(AsO4)4O8]. Cryst. Growth Des. 2011, 11, 3295.CrossrefGoogle Scholar

  • [12]

    S. V. Krivovichev, T. Armbruster, D. Y. Chernyshov, P. C. Burns, E. V. Nazarchuk, W. Depmeier, Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2] (H2O)2. Micropor. Mesopor. Mater. 2005a, 78, 225.Google Scholar

  • [13]

    S. V. Krivovichev, P. C. Burns, T. Armbruster, E. V. Nazarchuk, W. Depmeier, Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: Syntheses and crystal structures of (UO2)0.82[C8H20N]0.36[(UO2)6(MoO4)7 (H2O)2](H2O)n and [C6H14N2][(UO2)6(MoO4)7 (H2O)2](H2O)m. Micropor. Mesopor. Mater. 2005b, 78, 217.Google Scholar

  • [14]

    S. V. Krivovichev, C. L. Cahill, E. V. Nazarchuk, P. C. Burns, T. Armbruster, W. Depmeier, Chiral open-framework uranyl molybdates. 1. Topological diversity: Synthesis and crystal structure of [(C2H5)2NH2]2[(UO2)4(MoO4)5(H2O)](H2O). Micropor. Mesopor. Mater. 2005c, 78, 209.Google Scholar

  • [15]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, A crown ether as template for microporous and nanostructured uranium compounds. Angew. Chem. Int. Ed. 2008b, 47, 549.CrossrefGoogle Scholar

  • [16]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, T. Armbruster, H. Katzke, E. V. Suleimanov, E. V. Chuprunov, One-dimensional chains in uranyl tungstates: Syntheses and structures of A8[(UO2)4(WO4)4(WO5)2] (A = Rb, Cs) and Rb6[(UO2)2O(WO4)4]. J. Solid State Chem. 2006a, 179, 2977.Google Scholar

  • [17]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, O. I. Siidra, K. Knorr, E. V. Suleimanov, E. V. Chuprunov, Na2Li8L[(UO2)11O12(WO5)2]: Three different uranyl-ion coordination geometries and cation-cation interactions. Angew. Chem. Int. Ed. 2006b, 45, 7233.CrossrefGoogle Scholar

  • [18]

    E. V. Alekseev, S. V. Krivovichev, W. Depmeier, T. Malcherek, E. V. Suleimanov, E. V. Chuprunov, The crystal structure of Li4[(UO2)2(W2O10)] and crystal chemistry of Li uranyl tungstates. Z. Kristallogr. 2007c, 222, 391.Google Scholar

  • [19]

    E. V. Alekseev, S. V. Krivovichev, T. Armbruster, W. Depmeier, E. V. Suleimanov, E. V. Chuprunov, A. V. Golubev, Dimensional reduction in alkali metal uranyl molybdates: Synthesis and structure of Cs2[(UO2)O(MoO4)]. Z. Anorg. Allg. Chem. 2007a, 633, 1979.Google Scholar

  • [20]

    E. V. Alekseev, S. V. Krivovichev, T. Malcherek, W. Depmeier, One-dimensional array of two- and three-center cation-cation bonds in the structure of Li4[(UO2)10O10(Mo2O8)]. Inorg. Chem. 2007d, 46, 8442.Google Scholar

  • [21]

    E. V. Nazarchuk, O. I. Siidra, S. V. Krivovichev, T. Malcherek, W. Depmeier, First mixed alkaline uranyl molybdates: Synthesis and crystal structures of CsNa3[(UO2)4O4(Mo2O8)] and Cs2Na8[(UO2)8O8(Mo5O20)]. Z. Anorg. Allg. Chem. 2009, 635, 1231.Google Scholar

  • [22]

    S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, Y. A. Pakhomovskiy, W. Depmeier, Crystal structure of the K, Ti analogue of ilímaussite-(Ce), (Ba,K,Na,Ca)11-12(REE,Fe,Th)4(Ti,Nb)6 (Si6O18)4(OH)12·4.5H2O: Revision of structure model and structural formula. Z. Kristallogr. 2003, 218, 392.Google Scholar

  • [23]

    S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, N. Döbelin, P. Pattison, H.-P. Weber, W. Depmeier, Porous titanosilicate nanorods in the structure of yuksporite, (Sr,Ba)2K4(Ca,Na)14 (□,Mn,Fe){(Ti,Nb)4 (O,OH)4[(Si6O17]2[Si2O7]3}(H2O,OH)n, resolved using synchrotron radiation. Amer. Mineral. 2004c, 89, 1561.Google Scholar

  • [24]

    S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, Y. A. Pakhomovsky, H.-P. Weber, W. Depmeier, Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2·nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia. Amer. Mineral. 2004d, 89, 1816.Google Scholar

  • [25]

    I. Rozhdenstvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich, The structure of charoite, (K,Sr,Ba,Mn)15-16(Ca,Na)32((Si70(O,OH)180)) (OH,F)4.0.n(H2O), solved by conventional and automated electron diffraction. Mineral. Mag. 2010, 74, 159.Google Scholar

  • [26]

    I. V. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral. Mag. 2011, 75, 2833.CrossrefGoogle Scholar

  • [27]

    S. V. Krivovichev, T. Armbruster, W. Depmeier, One-dimensional lone electron pair micelles in the crystal structure of Pb5(SiO4)(VO4)2. Mater. Res. Bull. 2004a, 39, 1717.CrossrefGoogle Scholar

  • [28]

    S. V. Krivovichev, T. Armbruster, W. Depmeier, Crystal structures of Pb8O5(AsO4)2 and Pb5O4(CrO4), and review of PbO-related structural units in inorganic compounds. J. Solid State Chem. 2004b, 177, 1321.Google Scholar

  • [29]

    S. V. Krivovichev, O. I. Siidra, E. V. Nazarchuk, P. C. Burns, W. Depmeier, Particular topological complexity of lead oxide blocks in Pb31O22X18 (X = Br, Cl). Inorg. Chem. 2006, 45, 3846.Google Scholar

  • [30]

    O. I. Siidra, S. V. Krivovichev, T. Armbruster, W. Depmeier, Lead rare-earth oxyhalides: Syntheses and characterization of Pb6LaO7X (X = Cl, Br). Inorg. Chem. 2007a, 46, 1523.Google Scholar

  • [31]

    O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal chemistry of natural and synthetic lead oxyhalides. I. Crystal structure of Pb13O10Cl6. Geol. Ore Depos. 2007b, 49, 827.Google Scholar

  • [32]

    O. I. Siidra, S. V. Krivovichev, W. Depmeier, Structure and mechanism of the ionic conductivity of the nonstoichiometric compound Pb2+xOCl2+2x. Dokl. Phys. Chem. 2007c, 414, 128.Google Scholar

  • [33]

    O. I. Siidra, S. V. Krivovichev, T. Armbruster, W. Depmeier, Crystal chemistry of the mendipite-type system Pb3O2Cl2-Pb3O2Br2. Z. Kristallogr. 2008a, 223, 204.Google Scholar

  • [34]

    O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal chemistry of natural and synthetic lead oxohalides: II. Crystal structure of Pb7O4(OH)4Br2. Geol. Ore Depos. 2008b, 50, 801.Google Scholar

  • [35]

    O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal structure of Pb6O[(Si6Al2)O20]. Glas. Phys. Chem. 2009a, 35, 406.CrossrefGoogle Scholar

  • [36]

    O. I. Siidra, S. V. Krivovichev, C. Teske, W. Depmeier, Synthesis and crystal structure of a new oxohalide CdPb2O2Cl2. Glas. Phys. Chem. 2009b, 35, 411.CrossrefGoogle Scholar

  • [37]

    S. N. Britvin, O. I. Siidra, S. V. Krivovichev, W. Depmeier, Synthesis and crystal structure of the first thallium hydrous nesosilicate Tl4SiO4·0.5H2O. Z. Anorg. Allg. Chem. 2009, 635, 518.Google Scholar

  • [38]

    O. I. Siidra, S.N. Britvin, S.V. Krivovichev, W. Depmeier, Hydroxocentered [(OH)Tl3]2+ triangle as a building unit in thallium compounds: Synthesis and crystal structure of Tl4(OH)2CO3. Z. Kristallogr. 2009c, 224, 563.Google Scholar

  • [39]

    O. I. Siidra, S. N. Britvin, S. V. Krivovichev, W. Depmeier, Polytypism of layered alkaline hydroxides: Crystal structure of TlOH. Z. Anorg. Allg. Chem. 2010, 636, 595.Google Scholar

  • [40]

    O. I. Siidra, S. N. Britvin, S. V. Krivovichev, D. A. Klimov, W. Depmeier, Synthesis and crystal structure of the disordered modification of Tl6Si2O7. Glas. Phys. Chem. 2012, 38, 473.CrossrefGoogle Scholar

  • [41]

    S. N. Britvin, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, Layered hydrazinium titanate: Advanced reductive adsorbent and chemical toolkit for design of titanium dioxide nanomaterials. J. Am. Chem. Soc. 2011, 133, 9516.Google Scholar

  • [42]

    S. N. Britvin, Y. I. Korneyko, B. E. Burakov, A. Lotnyk, L. Kienle, W. Depmeier, S. V. Krivovichev, Sorption of nuclear waste components by layered hydrazinium titanate: A straightforward route to durable ceramic forms. Mater. Res. Soc. Symp. Proc. 2012a, 1475, 191.Google Scholar

  • [43]

    Y. I. Korneyko, S. N. Britvin, B. E. Burakov, A. Lotnyk, L. Kienle, W. Depmeier, S. V. Krivovichev, Crystalline titanate ceramic for immobilization of Tc-99. Mater. Res. Soc. Symp. Proc. 2012, 1475, 185.Google Scholar

  • [44]

    S. N. Britvin, O. I. Siidra, A. Lotnyk, S. V. Krivovichev, W. Depmeier, Niobate and tantalate pyrochlores: Soft synthesis by the fluoride route. Eur. J. Inorg. Chem. 2010a, 2010, 1082.CrossrefGoogle Scholar

  • [45]

    S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, The fluoride route to Lindqvist clusters: Synthesis and crystal structure of layered hexatantalate Na8Ta6O19·26H2O. Inorg. Chem. Commun. 2012b, 25, 18.Google Scholar

  • [46]

    S. N. Britvin, D. V. Spiridonova, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, Synthesis, structure and properties of hydrazinium germanate pharmacosiderite, (N2H5)3Ge7O15(OH)·2.5H2O. Micropor. Mesopor. Mater. 2010b, 131, 282.Google Scholar

  • [47]

    Y. Le Page, Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 1987, 20, 264.CrossrefGoogle Scholar

  • [48]

    A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7.CrossrefGoogle Scholar

  • [49]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [50]

    V. Kahlenberg, P. Perfler, J. Konzett, P. Blaha, Structural, spectroscopic, and computational studies on Tl4Si5O12: A microporous thallium silicate. Inorg. Chem. 2013, 52, 8941.Google Scholar

  • [51]

    S.V. Krivovichev, P.C. Burns, Crystal chemistry of basic lead carbonates. II. Crystal structure of synthetic ‘plumbonacrite’. Mineral. Mag. 2000, 64, 1069.Google Scholar

  • [52]

    M. S. Wickleder, Chains of OH-centered [Pb2+]3 triangles in the crystal structure of Pb3(OH)2(NH2SO3)4. Z. Anorg. Allg. Chem. 2005, 631, 2540.Google Scholar

About the article

Corresponding author: Sergey V. Krivovichev, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia; and Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia, E-mail:


Received: 2014-04-14

Accepted: 2014-08-29

Published Online: 2014-11-05

Published in Print: 2014-11-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 229, Issue 11, Pages 753–759, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1760.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Oleg Siidra, Diana Nekrasova, Wulf Depmeier, Nikita Chukanov, Anatoly Zaitsev, and Rick Turner
Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2018, Volume 74, Number 2, Page 182

Comments (0)

Please log in or register to comment.
Log in