Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 229, Issue 12

Issues

Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze

Md. Shahidur Rahman
  • Institut für Anorganische Chemie, Chemische Kristallographie fester Stoffe, Universität Bremen, Leobener Straße/NW2, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Mangir Murshed
  • Corresponding author
  • Institut für Anorganische Chemie, Chemische Kristallographie fester Stoffe, Universität Bremen, Leobener Straße/NW2, 28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thorsten M. Gesing
  • Institut für Anorganische Chemie, Chemische Kristallographie fester Stoffe, Universität Bremen, Leobener Straße/NW2, 28359 Bremen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-14 | DOI: https://doi.org/10.1515/zkri-2014-1777

Abstract

Lithium tungsten bronzes with a nominal composition of Li0.4WO3 were synthesized by solid state reactions in silica tubes at 973 K and various low pressures. Samples were characterized using X-ray single crystal and powder diffraction, and neutron powder diffraction. The air pressure inside the sealed quartz tubes played roles for the formation of Li0.4WO3 phases with different symmetries. Whereas using a pressure of 10–7 MPa a pure body centered cubic (Im3¯) tungsten bronze was formed, at higher pressures (>10–7 MPa) a mixture of Im3¯ and primitive cubic (Pm3¯m) perovskite tungsten bronzes were observed with pressure dependent phase fractions. While keeping the synthesized samples under open atmospheric conditions the Im3¯ phase gradually transformed into a tetragonal perovskite (P4/nmm) tungsten bronze. The slow cubic into tetragonal phase transformation has been explained in terms of the mobility of lithium within two different crystallographic sites.

This article offers supplementary material which is provided at the end of the article.

Keywords: lithium tungsten bronze; neutron diffraction; phase transformation; X-ray diffraction

References

  • [1]

    P. G. Dickens, M. S. Whittingham, Q. Rev. Chem. Soc. 1968, 22, 30.Google Scholar

  • [2]

    A. R. Sweedler, C. J. Raub, B. T. Matthias, Phys. Lett. 1965, 15, 108.Google Scholar

  • [3]

    L. Bartha, A. B. Kiss, Int. J. Refractory Metals & Hard Materials 1995, 13, 77.Google Scholar

  • [4]

    F. Wöhler, Ann. Chim. Phys. 1823, 43, 29.Google Scholar

  • [5]

    A. Magnéli, B. Blomberg, Acta Chem. Scand. 1951, 5, 372.Google Scholar

  • [6]

    J. Guo, C. Dong, L. Yang, G. Fu, H. Chen, Mater. Res. Bull. 2007, 42, 1384.Google Scholar

  • [7]

    R. J. D. Tilley, Int. J. Refractory Metals & Hard Materials 1995, 13, 93.Google Scholar

  • [8]

    M. E. Straumanis, S. S. Hsu, J. Am. Chem. Soc. 1950, 72, 4027.Google Scholar

  • [9]

    M. E. Straumanis, G. F. Doctor, J. Am. Chem. Soc. 1951, 73, 3492.Google Scholar

  • [10]

    L. E. Conroy, M. J. Sienko, J. Am. Chem. Soc. 1952, 74, 3520.Google Scholar

  • [11]

    P. J. Wiseman, P. G. Dickens, J. Solid State Chem. 1976, 17, 91.Google Scholar

  • [12]

    H. Inaba, K. Naito, J. Solid State Chem. 1976, 18, 279.Google Scholar

  • [13]

    K. H. Cheng, M. S. Whittingham, Solid State Ionics 1980, 1, 151.Google Scholar

  • [14]

    P. G. Dickens, S. A. Kay, Solid State Ionics 1983, 8, 291.Google Scholar

  • [15]

    R. J. Cava, A. Santoro, D. W. Murphy, S. M. Zahurak, R. S. Roth, J. Solid State Chem. 1983, 50, 121.Google Scholar

  • [16]

    K. R. Dey, C. H. Rüscher, Th. M. Gesing, A. Hussain, Mat. Res. Bull. 2007, 42, 591.Google Scholar

  • [17]

    M. J. Sienko, T. B. N. Troung, J. Am. Chem. Soc. 1961, 83, 3939.Google Scholar

  • [18]

    M. Green, Z. Hussain, J. Appl. Phys. 1993, 74, 3451.Google Scholar

  • [19]

    C. G. Granqvist, Sol. Energy Mater. & Sol. Cells 2000, 60, 201.Google Scholar

  • [20]

    M. Green, Ionics 1999, 5, 161.Google Scholar

  • [21]

    M. H. Kim, T. Y. Kang, Y. S. Jung, K. H. Kim, JAPAN. J. Appl. Phys. 2013, 52, 05EC03.CrossrefGoogle Scholar

  • [22]

    Y. Djaoued, S. Balaji, R. Brüning, J. Nanomater. 2012, DOI: 10.1155/2012/674168. Available at: http://www.hindawi.com/journals/jnm/2012/674168/.Crossref

  • [23]

    Q. Zhong, J. R. Dahn, K. Colbow, Phys. Rev. 1992, B46, 2554.Google Scholar

  • [24]

    G. M. Sheldrick, Shelxs-86, Program for Crystal Structure Determination, University of Göttingen, Germany, 1986.Google Scholar

  • [25]

    G. M. Sheldrick, Shelxl-93, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1993.PubMedGoogle Scholar

  • [26]

    A. C. Larson, R. B. Von. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2004) 86.Google Scholar

  • [27]

    M. A. Wechter, H. R. Shanks, A. F. Voigt, Inorg. Chem. 1968, 7, 845.Google Scholar

  • [28]

    C. H. Rüscher, K. R. Dey, T. Debnath, I. Horn, A. Hussain, R. Glaum, J. Solid State Chem. 2008, 181, 90.Google Scholar

  • [29]

    W. H. Jones Jr., E. A.Garbaty, R. G.Barnes, J. Chem. Phys. 1962, 36, 494.Google Scholar

  • [30]

    E. Banks, A. Goldstein, Inorg. Chem. 1968, 5, 966.Google Scholar

  • [31]

    R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Google Scholar

  • [32]

    A. J. Mark, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 1983, 130, 776.Google Scholar

  • [33]

    P. S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 1998, 10, 2753.Google Scholar

  • [34]

    A. D. Walkingshaw, N. A. Spaldin, E. Artacho, Phys. Rev. 2004, B70, 165110.Google Scholar

About the article

Corresponding author: M. Mangir Murshed, Institut für Anorganische Chemie, Chemische Kristallographie fester Stoffe, Universität Bremen, Leobener Straße/NW2, 28359 Bremen, Germany, Phone: +49 421 218 63143, Fax: +49 421 218 63145, E-mail:


Received: 2014-06-04

Accepted: 2014-08-26

Published Online: 2014-10-14

Published in Print: 2014-12-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 229, Issue 12, Pages 797–805, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1777.

Export Citation

©2014 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kohdai Ishida, Yuya Ikeuchi, Cédric Tassel, Hiroshi Takatsu, Craig M. Brown, and Hiroshi Kageyama
Inorganics, 2019, Volume 7, Number 5, Page 63
[2]
Shinichi Nishihaya, Masaki Uchida, Yusuke Kozuka, Yoshihiro Iwasa, Masashi Kawasaki, S. Nishihaya, M. Uchida, Y. Kozuka, Y. Iwasa, M. Kawasaki, Y. Iwasa, and M. Kawasaki
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 34, Page 22330

Comments (0)

Please log in or register to comment.
Log in