Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 229, Issue 12


Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms

Christian A. Schröder
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sanjib Saha / Klaus Huber / Stefano Leoni / Michael Wiebcke
  • Corresponding author
  • Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-28 | DOI: https://doi.org/10.1515/zkri-2014-1788


In this report, we summarize our experimental and theoretical investigations in the zinc(II) imidazolate, [Zn(im)2], and zinc(II) 4,5-dichloroimidazolate, [Zn(dcim)2], systems that have been published previously. This comprises a study on the thermodynamic stabilities of the two densest phases with coi and zni framework structures in the [Zn(im)2] system including the discovery and characterization of a new [Zn(im)2·0.5py]-neb phase (py = pyridine), a study on the mechanism of formation of the [Zn(im)2]-zni phase as well as a study on the discovery and characterization of a new [Zn(dcim)2]-SOD phase. In addition, we present as yet unpublished work. This concerns the discovery and characterization of a new [Zn(im)2·0.5mor]-neb phase (mor = morpholine) and investigations of the mechanisms of crystallization of [Zn(im)2·0.5py]-neb and [Zn(im)2·0.5mor]-neb as well as an evalutation of time-resolved SAXS/WAXS data recorded in-situ during the formation of [Zn(im)2]-zni.

Keywords: crystal formation; density functional theory; in-situ light scattering; in-situ X-ray scattering; zinc imidazolate


  • [1]

    J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001.CrossrefGoogle Scholar

  • [2]

    Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng, G.-H. Lee. [Co5(im)10·2MB]: A metal-organic open-framework with zeolite-like topology. Angew. Chem. Int. Ed. 2002, 41, 1384.CrossrefGoogle Scholar

  • [3]

    A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58.CrossrefGoogle Scholar

  • [4]

    P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A. K. Cheetham, T. Friscic, Rapid room-temperature synthesis of zeoltitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. 2010, 49, 9640.CrossrefGoogle Scholar

  • [5]

    Q. Shi, Z. Chen, Z. Song, J. Li, J. Dong, Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem. Int. Ed. 2011, 50, 672.Google Scholar

  • [6]

    O. Karagiaridi, W. Bury, A. A. Sarjeant, C. L. Stern, O. K. Farha, J. T. Hupp, Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chem. Sci. 2012, 3, 3256.CrossrefGoogle Scholar

  • [7]

    H. Fei, J. F. Cahill, K. A. Prather, S. M. Cohen, S. M. Cohen, Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 2013, 52, 4011.CrossrefGoogle Scholar

  • [8]

    M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782. Reticular Chemistry Structure Resource: http://rcsr.anu.edu.au/.

  • [9]

    I. A. Baburin, S. Leoni, G. Seifert, Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. J. Phys. Chem. 2008, B112, 9437.CrossrefGoogle Scholar

  • [10]

    D. W. Lewis, R. Ruiz-Salvador, A. Gómez, L. M. Rodriguez-Albelo, F.-X. Courdert, B. Slater, A. K. Cheetham, C. Mellot-Draznieks, Zeolitic imidazolate frameworks: structural and energetic trends compared with their zeolite analogues. CrystEngComm 2009, 11, 2272.CrossrefGoogle Scholar

  • [11]

    I. A. Baburin, S. Leoni, Modelling polymorphs of metal-organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm 2010, 12, 2809.CrossrefGoogle Scholar

  • [12]

    I. A. Baburin, B. Assfour, G. Seifert, S. Leoni, Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. Dalton Trans. 2011, 40, 3796.Google Scholar

  • [13]

    R. Galvelis, B. Slater, A. K. Cheetham, C. Mellot-Draznieks, Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. CrystEngComm 2012, 14, 374.CrossrefGoogle Scholar

  • [14]

    J. T. Hughes, T. D. Bennett, A. K. Cheetham, A. Navrotsky, Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J. Am. Chem. Soc. 2013, 135, 598.CrossrefGoogle Scholar

  • [15]

    X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557.CrossrefGoogle Scholar

  • [16]

    K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Expetional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA 2006, 103, 10186.CrossrefGoogle Scholar

  • [17]

    H. Hayashi, A. P. Côté, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Zeolite A imidazolate frameworks. Nature Mater. 2007, 6, 501.CrossrefGoogle Scholar

  • [18]

    I. A. Barurin, S. Leoni, The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazolate ring. J. Mater. Chem. 2012, 22, 10152.CrossrefGoogle Scholar

  • [19]

    R. Galvelis, B. Slater, R. Chaudret, B. Creton, C. Nieto-Draghi, C. Mellot-Draznieks, Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm 2013, 15, 9603.CrossrefGoogle Scholar

  • [20]

    J. Anwar, D. Zahn, Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew. Chem. Int. Ed. 2011, 50, 1996.CrossrefGoogle Scholar

  • [21]

    J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009, 21, 1410.CrossrefGoogle Scholar

  • [22]

    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130.CrossrefGoogle Scholar

  • [23]

    J. Cravillon, C. A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 2011, 50, 8067.Google Scholar

  • [24]

    S. R. Venna, J. B. Jasinski, M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030.Google Scholar

  • [25]

    J. Cravillon, C. A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 2012, 14, 492.Google Scholar

  • [26]

    P. Y. Moh, M. Brenda, M. W. Anderson, M. P. Attfield, Crystallisation of solvothermally synthesised ZIF-8 at the bulk, single crystal and surface level. CrystEngComm 2013, 15, 9672.Google Scholar

  • [27]

    M. Goesten, E. Stavitski, E. A. Pidko, C. Gücüyener, B. Boshuizen, S. N. Ehrlich, E. J. M. Hensen, F. Kapteijn, J. Gascon, The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J. 2013, 19, 7809.Google Scholar

  • [28]

    P. Y. Moh, P. Cubillas, M. W. Anderson, M. P. Attfield, revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc. 2011, 133, 13304.CrossrefGoogle Scholar

  • [29]

    P. Cubillas, M. W. Anderson, M. P. Attfield, Materials discovery and crystal growth of zeolite A type zeolitic-imidazolate frameworks revealed by atomic force microscopy. Chem. Eur. J. 2013, 19, 8236.CrossrefGoogle Scholar

  • [30]

    T. Friscic, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimäki, R. E. Dinnebier, Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chem. 2013, 5, 66.Google Scholar

  • [31]

    N. Pienack, W. Bensch, In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 2011, 50, 2014.CrossrefGoogle Scholar

  • [32]

    C. A. Schröder, I. A. Baburin, L. van Wüllen, M. Wiebcke, S. Leoni, Subtle polymorphism of zinc imidazolate frameworks: temperature-dependend ground states in the energy landscape revealed by experiment and theory. CrystEngComm 2013, 15, 4036.CrossrefGoogle Scholar

  • [33]

    T. Hikov, C. A. Schröder, J. Cravillon, M. Wiebcke, K. Huber, In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys. 2012, 14, 511.CrossrefGoogle Scholar

  • [34]

    M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, M. Wiebcke, Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans. 2014, 43, 3528.Google Scholar

  • [35]

    E. C. Spencer, R. J. Angel, N. L. Ross, B. E. Hanson, J. A. K. Howard, Pressure-induced cooperative bond rearrangemant in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study. J. Am. Chem. Soc. 2009, 131, 4022.CrossrefGoogle Scholar

  • [36]

    A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays, John Wiley & Sons, New York, p. 125, 1955.Google Scholar

  • [37]

    G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid Z. 1951, 124, 83.CrossrefGoogle Scholar

  • [38]

    G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 1995, 28, 717.CrossrefGoogle Scholar

  • [39]

    L. Rayleigh, On the diffraction of light by spheres of small relative index. Proc. Roy. Soc. (London) 1914, A90, 219.CrossrefGoogle Scholar

  • [40]

    Y.-Q. Tian, C.-X. Cai, X.-M. Ren, C.-Y. Duan, Y. Xu, S. Gao, X.-Z. You, The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. Chem. Eur. J. 2003, 9, 5673.CrossrefGoogle Scholar

  • [41]

    M. Lanchas, D. Vallejo-Sánchez, G. Beobide, O. Castillo, A. T. Aguayo, A. Luque, R. Román, A direct reaction approach for the synthesis of zeolitic imidazolate frameworks: template and temperature mediated control on network topology and crystal size. Chem. Commun. 2012, 48, 9930.CrossrefGoogle Scholar

  • [42]

    T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J.-C. Tan, A. K. Cheetham, Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 2010, 104, 115503.CrossrefGoogle Scholar

  • [43]

    J. D. Hancock, J. H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 1972, 55, 74.CrossrefGoogle Scholar

  • [44]

    R. Kiebach, N. Pienack, W. Bensch, J.-D. Grunwaldt, A. Michailovski, A. Baiker, T. Fox, Y. Zhou, G. R. Patzke, Hydrothermal formation of W/Mo-oxides: a multidisciplinatory study of growth and shape. Chem. Mater. 2008, 20, 3022.CrossrefGoogle Scholar

  • [45]

    L. Engelke, M. Schaefer, F. Porsch, W. Bensch, In-situ energy-dispersive X-ray diffraction studies of crystal growth and compound conversion under solvothermal conditions. Eur. J. Inorg. Chem. 2003, 506.CrossrefGoogle Scholar

  • [46]

    J. D. Rodriguez-Blanco, S. Shaw, L. G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265.CrossrefGoogle Scholar

  • [47]

    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939.CrossrefGoogle Scholar

  • [48]

    W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi, A combined experimental-computational investigation of the carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2010, 132, 11006.CrossrefGoogle Scholar

  • [49]

    A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J. 2011, 17, 6643.CrossrefGoogle Scholar

  • [50]

    T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 2009, 48, 4739.CrossrefGoogle Scholar

  • [51]

    A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, Morphology design of porous coordiantion polymer crystals by coordination modulation. J. Am. Chem. Soc. 2011, 133, 15506.CrossrefGoogle Scholar

  • [52]

    J.-P. Zhang, Y.-Y. Lin, X.-C. Huang, X.-M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(I) 3,5-dimethyl-1,2,4-triazolate. Dalton Trans. 2005, 3681.Google Scholar

  • [53]

    X.-C. Huang, J.-P. Zhang, X.-M. Chen, One-dimensional supramolecular isomerism of copper(I) and silver(I) imidazolate based on the ligand orientations. Cryst. Growth Des. 2006, 6, 1194.CrossrefGoogle Scholar

  • [54]

    J.-P. Zhang, X.-C. Huang, X.-M. Chen, Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 2009, 38, 2385.CrossrefGoogle Scholar

  • [55]

    P. Panine, S. Finet, T. M. Weiss, T. Narayanan, Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv. Colloid Interface Sci. 2006, 127, 9.Google Scholar

  • [56]

    G. Sheldrick, A short history of SHELX, Acta Crystallogr. 2008, A64, 112.Google Scholar

About the article

Corresponding author: Michael Wiebcke, Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstrasse 9, 30167 Hannover, Germany, E-mail:

Received: 2014-07-25

Accepted: 2014-09-24

Published Online: 2014-10-28

Published in Print: 2014-12-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 229, Issue 12, Pages 807–822, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1788.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sanjib Saha, Sergej Springer, Maria E. Schweinefuß, Diego Pontoni, Michael Wiebcke, and Klaus Huber
Crystal Growth & Design, 2016, Volume 16, Number 4, Page 2002

Comments (0)

Please log in or register to comment.
Log in