Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 229, Issue 7 (Jul 2014)

Issues

Experimental and theoretical investigation of the new, metastable compound Cr3Sb

Matthias Regus
  • Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerhard Kuhn
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svitlana Polesya
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergiy Mankovsky
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matti Alemayehu
  • Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthew Stolt
  • Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David C. Johnson
  • Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hubert Ebert
  • Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Bensch
  • Corresponding author
  • Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-26 | DOI: https://doi.org/10.1515/zkri-2014-1744

Abstract

A new metastable compound Cr3Sb was synthesized as thin film starting from modulated elemental reactant layers. The new compound is cubic and crystallizes in the A15 structure (Cr3Si-type). A variation of the occupancy of the Sb position (0, 0, 0) was observed leading to a Cr-rich sample with formula Cr∼6Sb. In-situ X-ray diffraction and reflectivity investigations indicate an interdiffusion of the multilayers and crystallization of the new compound below 350°C. Calculations of the crystal structure and lattice parameter agree well with the experimental results. In addition the existence of a further metastable phase, a Heusler-like alloy, is discussed and supported by DFT calculations.

Keywords: band structure calculations; DFT; metastable compound; modulated elemental reactant; thin films

References

  • [1]

    P. Villars, T. B. Massalski, H. Okamoto, P. R. Subramania, L. Kacprzak, Binary Alloy Phase Diagrams (Eds.). ASM International, 2nd Ed., Materials Park, OH, 1990.Google Scholar

  • [2]

    R. Vogel, R. Reinbach, Das system eisen-chrom-cromsulfid-eisensulfid. Arch. Eisenhüttenwes. 1938, 11, 457.Google Scholar

  • [3]

    F. Jellinek, The structures of the chromium sulphides. Acta Crystallogr. 1957, 10, 620.CrossrefGoogle Scholar

  • [4]

    T. J. A. Popma, C. F. van Bruggen, Structural and magnetic phase transitions of chromium sulfides Cr1-xS with 0≤x≤0.12. J. Inorg. Nucl. Chem. 1969, 31, 73.Google Scholar

  • [5]

    H. Rau, The chromium-sulphur system between 873 K and 1364 K. J. Less-Common Met. 1977, 55, 205.Google Scholar

  • [6]

    L. M. Corliss, N. Elliott, J. M. Hastings, R. L. Sass, Magnetic structure of chromium selenide. Phys. Rev. 1961, 122, 1402.CrossrefGoogle Scholar

  • [7]

    A. A. Babitsyna, M. A. Chernitsyna, V. T. Kalinnikov, Equilibrium diagramof the chromium-selenium system. Russ. J. Inorg. Chem. 1975, 20, 1855.Google Scholar

  • [8]

    R. Blachnik, R. Gunia, G. P. Fischer, M. Lutz, H. D.: The chromium-selenium system. J. Less-Common Met. 1987, 134, 169.Google Scholar

  • [9]

    H. Ipser, K. L. Komarek, K. O. Klepp, Transition metal-chalcogen systems. VIII: The chromium-tellurium phase diagram. J. Less-Common Met. 1983, 92, 265.Google Scholar

  • [10]

    H. Nowotny, J. Pesl, Untersuchungen im System Titan-Antimon. Monatsh. Chem. 1951, 82, 336.CrossrefGoogle Scholar

  • [11]

    L. D. Dudkin, V. I. Vaidanich, The nature of the electronic conductivity of certain compounds of transition metals with CuAl2-structure. Sov. Phys.-Solid State, 1960, 2, 404.Google Scholar

  • [12]

    J. D. Donaldson, A. Kjekshus, D. G. Nicholson, F. Rakke, Properties of titanium antimonide (TiSb2) and vanadium antimonide (VSb2). J. Less-Common Met. 1975, 41, 255.Google Scholar

  • [13]

    J. F. Smith, The Sb-V (antimony-vanadium) system. J. Alloy Phase Diagrams 1989, 5, 189.Google Scholar

  • [14]

    M. Venkatraman, J. P. Neumann, The Cr-Sb (Chromium-Antimony) System. Bull. Alloys Phase Diagrams 1990, 11, 435.Google Scholar

  • [15]

    G. Melnyk, W. Tremel, The titanium-iron-antimony ternary system and the crystal and electronic structure of the interstitial compound Ti5FeSb2. J. Alloys Compd. 2003, 349, 164.Google Scholar

  • [16]

    B. Grison, P. A. Beck, The crystal structure of VSb. Acta Crystallogr. 1962, 15, 807.CrossrefGoogle Scholar

  • [17]

    Y. Noda, M. Shimada, M. Koizumi, High-pressure synthesis and magnetic properties of the solid solution MnCrSb and CrMnSb (0≤x, y≤1.0). J. Solid State Chem. 1983, 49, 215.Google Scholar

  • [18]

    E. E. Havinga, H. Damsma, P. Hokkeling, Compounds and pseudobinary alloys with the CuAl2 (C16)-type structure. 1. Preparation and x-ray results. J. Less-Common Met. 1972, 27, 169.Google Scholar

  • [19]

    T. Harada, T. Kanomata, Y. Takahashi, O. Nashima, H. Yoshida, T. Kaneko, Structural and electrical properties of Cr1-xRuxSb2. J. Alloys Compd. 2004, 383, 200.Google Scholar

  • [20]

    H. Takizawa, K. Uheda, T. Endo, A new ferromagnetic polymorph of CrSb2 synthesized under high pressure. J. Alloys Compd. 1999, 287, 145.Google Scholar

  • [21]

    S. E. Rasmussen, R. G. Hazell, Preparation of single phase and single crystals in the vanadium-gallium-antimony system. Crystal structure of V6GaSb. Acta Chem. Scand. Ser. A. 1978, 32, 785.CrossrefGoogle Scholar

  • [22]

    A. Junod, F. Heiniger, J. Muller, P. Spitzli, Supraconductivité et chaleur spécifique d’alliages basés sur Ti3Sb. Helv. Phys. Acta 1970, 43, 59.Google Scholar

  • [23]

    S. Ramakrishnan, A. K. Nigam, G. Chandra, Susceptibility and upper critical field studies on A-15 superconducting titanium antimonide (Ti3Sb) compound. Solid State Commun. 1984, 52, 641.Google Scholar

  • [24]

    B. T. Matthias, T. H. Geballe, V. B. Compton, Superconductivity. Rev. Mod. Phys. 1963, 35, 1.CrossrefGoogle Scholar

  • [25]

    L. D. Hartsough, Stability of A15 type phases. J. Phys. Chem. Solids 1974, 35, 1691.CrossrefGoogle Scholar

  • [26]

    X. M. Zhang, X. F. Dai, H. Y. Jia, G. F. Chen, H. Y. Liu, H. Z. Luo, Y. Li, X. Yu, G. D. Liu, W. H. Wang, G. H. Wu, Electronic structures and magnetism of Cr3Z (Z = Si, Ge, Sb) with DO3 structures. Comput. Mater. Sci. 2012, 65, 456.CrossrefGoogle Scholar

  • [27]

    N. Pienack, W. Bensch, In situ monitoring the formation of crystalline solids. Angew. Chemie Int. Ed. 2011, 50, 2014.CrossrefGoogle Scholar

  • [28]

    M. Noh, C. D. Johnson, M. D. Hornbostel, J. Thiel, D. C. Johnson, Control of reaction pathway and the nanostructure of final products through the design of modulated elemental reactants. Chem. Mater. 1996, 8, 1625.CrossrefGoogle Scholar

  • [29]

    D. C. Johnson, Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 1998, 3, 159.Google Scholar

  • [30]

    R. Schneidermiller, M. D. Hornbostel, D. C. Johnson, Kinetics of formation of molybdenum selenides from modulated reactants and structure of the new compound Mo3Se. Inorg. Chem. 1997, 36, 5894.Google Scholar

  • [31]

    J. R. Williams, M. Johnson, D. C. Johnson, Composition dependence of the nucleation energy of iron antimonides from modulated elemental reactants. J. Am. Chem. Soc. 2001, 123, 1645.CrossrefGoogle Scholar

  • [32]

    J. R. Williams, D. C. Johnson, Synthesis of the new metastable skutterudite compound NiSb3 from modulated elemental reactants. Inorg. Chem. 2002, 41, 4127.CrossrefPubMedGoogle Scholar

  • [33]

    A. L. E. Smally, M. L. Jespersen, D. C. Johnson, Synthesis and structural evolution of RuSb3, a new metastable skutterudite compound. Inorg. Chem. 2004, 43, 2486.CrossrefGoogle Scholar

  • [34]

    M. Behrens, R. Kiebach, W. Bensch, Synthesis of thin Cr3Se4 films from modulated elemental reactants via two amorphous intermediates: a detailed examination of the reaction mechanism. Inorg. Chem. 2006, 45, 2704.CrossrefPubMedGoogle Scholar

  • [35]

    M. Behrens, J. Tomforde, E. May, R. Kiebach, W. Bensch, D. Häußler, W. Jäger, A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy. J. Solid State Chem. 2006, 179, 3330.Google Scholar

  • [36]

    M. Regus, G. Kuhn, S. Mankovsky, H. Ebert, W. Bensch, Investigations of the crystallization mechanism of CrSb and CrSb2 multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry. J. Solid State Chem. 2012, 196, 100.Google Scholar

  • [37]

    N. T. Nguyen, B. Howe, J. R. Hash, N. Liebrecht, D. C. Johnson, Synthesis of [(VSe2)n]1.06[(TaSe2)n] superlattices using a hybrid approach: self-assembly of amorphous nanostructured reactants. Adv. Mater. 2006, 18, 118.Google Scholar

  • [38]

    C. Chiritescu, D. G. Cahill, N. Nguyen, D. C. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 2007, 315, 351.Google Scholar

  • [39]

    F. R. Harris, S. Standridge, C. Feik, D. C. Johnson, Design and synthesis of [(Bi2Te3)x(TiTe2)y] superlattices. Angew. Chem. 2003, 115, 5453.Google Scholar

  • [40]

    Q. Lin, C. L. Heideman, N. Nguyen, P. Zschack, C. Chiritescu, D. G. Cahill, D. C. Johnson, Designed synthesis of families of misfit-layered compounds. Eur. J. Inorg. Chem. 2008, 15, 2382.CrossrefGoogle Scholar

  • [41]

    R. Atkins, J. Wilson, P. Zschack, C. Grosse, W. Neumann, D. C. Johnson, Synthesis of [(SnSe)1.15]m(TaSe2)n ferecrystals: structurally tunable metallic compounds. Chem. Mater. 2012, 24, 4594.CrossrefGoogle Scholar

  • [42]

    M. M. Smeller, C. L. Heideman, Q. Lin, M. Beekman, M. D. Anderson, P. Zschack, I. M. Anderson, D. C. Johnson, Structure of turbostratically disordered misfit layer compounds [(PbSe)0.99]1[WSe2]1, [(PbSe)1.00]1[MoSe2]1, and [(SnSe)1.03]1[MoSe2]1. Z. Anorg. Allg. Chem. 2012, 638, 2632.Google Scholar

  • [43]

    R. Atkins, D. B. Moore, D. C. Johnson, Insights into the self-assembly of ferecrystalline compounds from designed amorphous precursors. Chem. Mater. 2013, 25, 1744.CrossrefGoogle Scholar

  • [44]

    R. Atkins, S. Disch, Z. Jones, I. Haeusler, C. Grosse, S. F. Fischer, W. Neumann, P. Zschack, D. C. Johnson, Synthesis, structure and electrical properties of a new tin vanadium selenide. J. Solid State Chem. 2013, 202, 128.Google Scholar

  • [45]

    C. Grosse, R. Atkins, H. Kirmse, A. Mogilatenko, W. Neumann, D. C. Johnson, Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound. J. Alloys Compd. 2013, 579, 507.Google Scholar

  • [46]

    D. B. Moore, M. Beekman, S. Disch, P. Zschack, I. Hausler, W. Neumann, D. C. Johnson, Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 2013, 25, 2404.CrossrefGoogle Scholar

  • [47]

    M. Beekman, S. Disch, S. Rouvimov, D. Kasinathan, K. Koepernik, H. Rosner, P. Zschack, W. S. Neumann, D. C. Johnson, Controlling size-induced phase transformations using chemically designed nanolaminates. Angew. Chem. Int. Ed. 2013, 52, 13211.CrossrefGoogle Scholar

  • [48]

    L. Fister, X. M. Le, J. McConnell, T. Novet, D. C. Johnson, Deposition system for the synthesis of modulated, ultrathin-film composites. J. Vac. Sci. Technol. A 1993, 11, 3014.CrossrefGoogle Scholar

  • [49]

    A. Coelho, Topas Academic, 4.1 ed.; Coelho Software: Brisbane, Australia, 2007.Google Scholar

  • [50]

    L. B. McCusker, R. B. von Dreele, D. E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36.CrossrefGoogle Scholar

  • [51]

    R. W. Cheary, A. Coelho, A fundamental parameters approach to x-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109.CrossrefGoogle Scholar

  • [52]

    M. Järvinen, Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Crystallogr. 1993, 25, 525.CrossrefGoogle Scholar

  • [53]

    D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louer, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stepfens, B. H. Toby, Size-strain line-broadening analysis of the ceria round-robin sample. J. Appl. Crystallogr. 2004, 37, 911.CrossrefGoogle Scholar

  • [54]

    M. Fukuto, M. D. Hornbostel, D. C. Johnson, Use of superlattice structure to control reaction mechanism: kinetics and energetics of Nb5Se4 formation. J. Am. Chem. Soc. 1994, 116, 9136.CrossrefGoogle Scholar

  • [55]

    H. Ebert, D. Koedderitzsch, J. Minar, Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501/1.CrossrefGoogle Scholar

  • [56]

    J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossrefPubMedGoogle Scholar

  • [57]

    W. Heisenberg, Zur theorie des ferromagnetismus. Zeitschrift für Physik. 1928, 49, 619.Google Scholar

  • [58]

    A. I. Liechstenstein, M. I. Katsnelson, V. P. Antropov, V. A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987, 67, 65.CrossrefGoogle Scholar

  • [59]

    A. I. Snow, Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys. 1953, 25, 127.CrossrefGoogle Scholar

  • [60]

    K. Kimoto, I. Nishida, An electron diffraction study on the crystal structure of a new modification of chromium. J. Phys. Soc. Jpn. 1967, 22, 744.CrossrefGoogle Scholar

  • [61]

    I. Nishida, K. Kimoto, Crystal habit and crystal structure of fine chromium particles: an electron microscope and electron diffraction study of fine metallic particles prepared by evaporation in argon at low pressures (III). Thin Solid Films 1974, 23, 179.Google Scholar

  • [62]

    C. G. Granqvist, G. J. Milanowski, R. A. Buhrman, A15 Type structure of chromium films and particles. Phys. Lett. A 1975, 54, 245.CrossrefGoogle Scholar

  • [63]

    C. J. Doherty, J. M. Poate, R. J. H. Voorhoeve, Vacuum-evaporated films of chromium with the A-15 structure. J. Appl. Phys. 1977, 48, 2050.CrossrefGoogle Scholar

About the article

Corresponding author: Wolfgang Bensch, Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany, E-mail:


Received: 2014-02-28

Accepted: 2014-05-08

Published Online: 2014-06-26

Published in Print: 2014-07-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1744.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sage R. Bauers, Suzannah R. Wood, Kirsten M. Ø. Jensen, Anders B. Blichfeld, Bo B. Iversen, Simon J. L. Billinge, and David C. Johnson
Journal of the American Chemical Society, 2015, Volume 137, Number 30, Page 9652

Comments (0)

Please log in or register to comment.
Log in