[1]
P. Villars, T. B. Massalski, H. Okamoto, P. R. Subramania, L. Kacprzak, Binary Alloy Phase Diagrams (Eds.). ASM International, 2nd Ed., Materials Park, OH, 1990.Google Scholar
[2]
R. Vogel, R. Reinbach, Das system eisen-chrom-cromsulfid-eisensulfid. Arch. Eisenhüttenwes. 1938, 11, 457.Google Scholar
[3]
F. Jellinek, The structures of the chromium sulphides. Acta Crystallogr. 1957, 10, 620.CrossrefGoogle Scholar
[4]
T. J. A. Popma, C. F. van Bruggen, Structural and magnetic phase transitions of chromium sulfides Cr1-xS with 0≤x≤0.12. J. Inorg. Nucl. Chem. 1969, 31, 73.Google Scholar
[5]
H. Rau, The chromium-sulphur system between 873 K and 1364 K. J. Less-Common Met. 1977, 55, 205.Google Scholar
[6]
L. M. Corliss, N. Elliott, J. M. Hastings, R. L. Sass, Magnetic structure of chromium selenide. Phys. Rev. 1961, 122, 1402.CrossrefGoogle Scholar
[7]
A. A. Babitsyna, M. A. Chernitsyna, V. T. Kalinnikov, Equilibrium diagramof the chromium-selenium system. Russ. J. Inorg. Chem. 1975, 20, 1855.Google Scholar
[8]
R. Blachnik, R. Gunia, G. P. Fischer, M. Lutz, H. D.: The chromium-selenium system. J. Less-Common Met. 1987, 134, 169.Google Scholar
[9]
H. Ipser, K. L. Komarek, K. O. Klepp, Transition metal-chalcogen systems. VIII: The chromium-tellurium phase diagram. J. Less-Common Met. 1983, 92, 265.Google Scholar
[10]
H. Nowotny, J. Pesl, Untersuchungen im System Titan-Antimon. Monatsh. Chem. 1951, 82, 336.CrossrefGoogle Scholar
[11]
L. D. Dudkin, V. I. Vaidanich, The nature of the electronic conductivity of certain compounds of transition metals with CuAl2-structure. Sov. Phys.-Solid State, 1960, 2, 404.Google Scholar
[12]
J. D. Donaldson, A. Kjekshus, D. G. Nicholson, F. Rakke, Properties of titanium antimonide (TiSb2) and vanadium antimonide (VSb2). J. Less-Common Met. 1975, 41, 255.Google Scholar
[13]
J. F. Smith, The Sb-V (antimony-vanadium) system. J. Alloy Phase Diagrams 1989, 5, 189.Google Scholar
[14]
M. Venkatraman, J. P. Neumann, The Cr-Sb (Chromium-Antimony) System. Bull. Alloys Phase Diagrams 1990, 11, 435.Google Scholar
[15]
G. Melnyk, W. Tremel, The titanium-iron-antimony ternary system and the crystal and electronic structure of the interstitial compound Ti5FeSb2. J. Alloys Compd. 2003, 349, 164.Google Scholar
[16]
B. Grison, P. A. Beck, The crystal structure of VSb. Acta Crystallogr. 1962, 15, 807.CrossrefGoogle Scholar
[17]
Y. Noda, M. Shimada, M. Koizumi, High-pressure synthesis and magnetic properties of the solid solution MnCrSb and CrMnSb (0≤x, y≤1.0). J. Solid State Chem. 1983, 49, 215.Google Scholar
[18]
E. E. Havinga, H. Damsma, P. Hokkeling, Compounds and pseudobinary alloys with the CuAl2 (C16)-type structure. 1. Preparation and x-ray results. J. Less-Common Met. 1972, 27, 169.Google Scholar
[19]
T. Harada, T. Kanomata, Y. Takahashi, O. Nashima, H. Yoshida, T. Kaneko, Structural and electrical properties of Cr1-xRuxSb2. J. Alloys Compd. 2004, 383, 200.Google Scholar
[20]
H. Takizawa, K. Uheda, T. Endo, A new ferromagnetic polymorph of CrSb2 synthesized under high pressure. J. Alloys Compd. 1999, 287, 145.Google Scholar
[21]
S. E. Rasmussen, R. G. Hazell, Preparation of single phase and single crystals in the vanadium-gallium-antimony system. Crystal structure of V6GaSb. Acta Chem. Scand. Ser. A. 1978, 32, 785.CrossrefGoogle Scholar
[22]
A. Junod, F. Heiniger, J. Muller, P. Spitzli, Supraconductivité et chaleur spécifique d’alliages basés sur Ti3Sb. Helv. Phys. Acta 1970, 43, 59.Google Scholar
[23]
S. Ramakrishnan, A. K. Nigam, G. Chandra, Susceptibility and upper critical field studies on A-15 superconducting titanium antimonide (Ti3Sb) compound. Solid State Commun. 1984, 52, 641.Google Scholar
[24]
B. T. Matthias, T. H. Geballe, V. B. Compton, Superconductivity. Rev. Mod. Phys. 1963, 35, 1.CrossrefGoogle Scholar
[25]
L. D. Hartsough, Stability of A15 type phases. J. Phys. Chem. Solids 1974, 35, 1691.CrossrefGoogle Scholar
[26]
X. M. Zhang, X. F. Dai, H. Y. Jia, G. F. Chen, H. Y. Liu, H. Z. Luo, Y. Li, X. Yu, G. D. Liu, W. H. Wang, G. H. Wu, Electronic structures and magnetism of Cr3Z (Z = Si, Ge, Sb) with DO3 structures. Comput. Mater. Sci. 2012, 65, 456.CrossrefGoogle Scholar
[27]
N. Pienack, W. Bensch, In situ monitoring the formation of crystalline solids. Angew. Chemie Int. Ed. 2011, 50, 2014.CrossrefGoogle Scholar
[28]
M. Noh, C. D. Johnson, M. D. Hornbostel, J. Thiel, D. C. Johnson, Control of reaction pathway and the nanostructure of final products through the design of modulated elemental reactants. Chem. Mater. 1996, 8, 1625.CrossrefGoogle Scholar
[29]
D. C. Johnson, Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 1998, 3, 159.Google Scholar
[30]
R. Schneidermiller, M. D. Hornbostel, D. C. Johnson, Kinetics of formation of molybdenum selenides from modulated reactants and structure of the new compound Mo3Se. Inorg. Chem. 1997, 36, 5894.Google Scholar
[31]
J. R. Williams, M. Johnson, D. C. Johnson, Composition dependence of the nucleation energy of iron antimonides from modulated elemental reactants. J. Am. Chem. Soc. 2001, 123, 1645.CrossrefGoogle Scholar
[32]
J. R. Williams, D. C. Johnson, Synthesis of the new metastable skutterudite compound NiSb3 from modulated elemental reactants. Inorg. Chem. 2002, 41, 4127.CrossrefPubMedGoogle Scholar
[33]
A. L. E. Smally, M. L. Jespersen, D. C. Johnson, Synthesis and structural evolution of RuSb3, a new metastable skutterudite compound. Inorg. Chem. 2004, 43, 2486.CrossrefGoogle Scholar
[34]
M. Behrens, R. Kiebach, W. Bensch, Synthesis of thin Cr3Se4 films from modulated elemental reactants via two amorphous intermediates: a detailed examination of the reaction mechanism. Inorg. Chem. 2006, 45, 2704.CrossrefPubMedGoogle Scholar
[35]
M. Behrens, J. Tomforde, E. May, R. Kiebach, W. Bensch, D. Häußler, W. Jäger, A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy. J. Solid State Chem. 2006, 179, 3330.Google Scholar
[36]
M. Regus, G. Kuhn, S. Mankovsky, H. Ebert, W. Bensch, Investigations of the crystallization mechanism of CrSb and CrSb2 multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry. J. Solid State Chem. 2012, 196, 100.Google Scholar
[37]
N. T. Nguyen, B. Howe, J. R. Hash, N. Liebrecht, D. C. Johnson, Synthesis of [(VSe2)n]1.06[(TaSe2)n] superlattices using a hybrid approach: self-assembly of amorphous nanostructured reactants. Adv. Mater. 2006, 18, 118.Google Scholar
[38]
C. Chiritescu, D. G. Cahill, N. Nguyen, D. C. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 2007, 315, 351.Google Scholar
[39]
F. R. Harris, S. Standridge, C. Feik, D. C. Johnson, Design and synthesis of [(Bi2Te3)x(TiTe2)y] superlattices. Angew. Chem. 2003, 115, 5453.Google Scholar
[40]
Q. Lin, C. L. Heideman, N. Nguyen, P. Zschack, C. Chiritescu, D. G. Cahill, D. C. Johnson, Designed synthesis of families of misfit-layered compounds. Eur. J. Inorg. Chem. 2008, 15, 2382.CrossrefGoogle Scholar
[41]
R. Atkins, J. Wilson, P. Zschack, C. Grosse, W. Neumann, D. C. Johnson, Synthesis of [(SnSe)1.15]m(TaSe2)n ferecrystals: structurally tunable metallic compounds. Chem. Mater. 2012, 24, 4594.CrossrefGoogle Scholar
[42]
M. M. Smeller, C. L. Heideman, Q. Lin, M. Beekman, M. D. Anderson, P. Zschack, I. M. Anderson, D. C. Johnson, Structure of turbostratically disordered misfit layer compounds [(PbSe)0.99]1[WSe2]1, [(PbSe)1.00]1[MoSe2]1, and [(SnSe)1.03]1[MoSe2]1. Z. Anorg. Allg. Chem. 2012, 638, 2632.Google Scholar
[43]
R. Atkins, D. B. Moore, D. C. Johnson, Insights into the self-assembly of ferecrystalline compounds from designed amorphous precursors. Chem. Mater. 2013, 25, 1744.CrossrefGoogle Scholar
[44]
R. Atkins, S. Disch, Z. Jones, I. Haeusler, C. Grosse, S. F. Fischer, W. Neumann, P. Zschack, D. C. Johnson, Synthesis, structure and electrical properties of a new tin vanadium selenide. J. Solid State Chem. 2013, 202, 128.Google Scholar
[45]
C. Grosse, R. Atkins, H. Kirmse, A. Mogilatenko, W. Neumann, D. C. Johnson, Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound. J. Alloys Compd. 2013, 579, 507.Google Scholar
[46]
D. B. Moore, M. Beekman, S. Disch, P. Zschack, I. Hausler, W. Neumann, D. C. Johnson, Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 2013, 25, 2404.CrossrefGoogle Scholar
[47]
M. Beekman, S. Disch, S. Rouvimov, D. Kasinathan, K. Koepernik, H. Rosner, P. Zschack, W. S. Neumann, D. C. Johnson, Controlling size-induced phase transformations using chemically designed nanolaminates. Angew. Chem. Int. Ed. 2013, 52, 13211.CrossrefGoogle Scholar
[48]
L. Fister, X. M. Le, J. McConnell, T. Novet, D. C. Johnson, Deposition system for the synthesis of modulated, ultrathin-film composites. J. Vac. Sci. Technol. A 1993, 11, 3014.CrossrefGoogle Scholar
[49]
A. Coelho, Topas Academic, 4.1 ed.; Coelho Software: Brisbane, Australia, 2007.Google Scholar
[50]
L. B. McCusker, R. B. von Dreele, D. E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36.CrossrefGoogle Scholar
[51]
R. W. Cheary, A. Coelho, A fundamental parameters approach to x-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109.CrossrefGoogle Scholar
[52]
M. Järvinen, Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Crystallogr. 1993, 25, 525.CrossrefGoogle Scholar
[53]
D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louer, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stepfens, B. H. Toby, Size-strain line-broadening analysis of the ceria round-robin sample. J. Appl. Crystallogr. 2004, 37, 911.CrossrefGoogle Scholar
[54]
M. Fukuto, M. D. Hornbostel, D. C. Johnson, Use of superlattice structure to control reaction mechanism: kinetics and energetics of Nb5Se4 formation. J. Am. Chem. Soc. 1994, 116, 9136.CrossrefGoogle Scholar
[55]
H. Ebert, D. Koedderitzsch, J. Minar, Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501/1.CrossrefGoogle Scholar
[56]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossrefPubMedGoogle Scholar
[57]
W. Heisenberg, Zur theorie des ferromagnetismus. Zeitschrift für Physik. 1928, 49, 619.Google Scholar
[58]
A. I. Liechstenstein, M. I. Katsnelson, V. P. Antropov, V. A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987, 67, 65.CrossrefGoogle Scholar
[59]
A. I. Snow, Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys. 1953, 25, 127.CrossrefGoogle Scholar
[60]
K. Kimoto, I. Nishida, An electron diffraction study on the crystal structure of a new modification of chromium. J. Phys. Soc. Jpn. 1967, 22, 744.CrossrefGoogle Scholar
[61]
I. Nishida, K. Kimoto, Crystal habit and crystal structure of fine chromium particles: an electron microscope and electron diffraction study of fine metallic particles prepared by evaporation in argon at low pressures (III). Thin Solid Films 1974, 23, 179.Google Scholar
[62]
C. G. Granqvist, G. J. Milanowski, R. A. Buhrman, A15 Type structure of chromium films and particles. Phys. Lett. A 1975, 54, 245.CrossrefGoogle Scholar
[63]
C. J. Doherty, J. M. Poate, R. J. H. Voorhoeve, Vacuum-evaporated films of chromium with the A-15 structure. J. Appl. Phys. 1977, 48, 2050.CrossrefGoogle Scholar
Comments (0)