Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 25, 2014

Partially amorphous (metamict) titanite: a silicate mineral in a natural radiation induced non-equilibrium phase

  • Tobias Beirau EMAIL logo

Abstract

The present review will give a brief overview mainly focused on studies during the past 5 years on the mineral titanite (end-member composition CaTiSiO5) which could incorporate radioactive elements in its crystal structure. Aspects of investigations were the structural damage resulting from the radioactive decay, the thermally induced recrystallization process and the elastic properties of the mineral. During the radiation induced damage process, namely the metamictization, titanite becomes partially amorphous with coexisting defect enriched crystalline and aperiodic regions. Within these crystalline regions a P21/c to C2/c phase transition (∼ at 500 K) occurs. Resulting from radiation induced structural damage, titanite shows elastic properties close to those of titanite glass. During recrystallization on annealing an initial softening of the titanite structure takes place (up to temperature ∼950 K) resulting from the formation of soft interfaces. Thermal annealing at higher temperatures leads to increasing structural order and the hardening of the mineral.


Corresponding author: Tobias Beirau, Mineralogisch-Petrographisches Institut, Department of Earth Sciences, University of Hamburg, 20146 Hamburg, Germany, E-mail:

Acknowledgments

Most of the work summarized in this review has been done in cooperation with Ulrich Bismayer and Boriana Mihailova from the University of Hamburg whom I like to thank also for fruitful discussions. The reported work is based also on extended collaboration with Carsten Paulmann and Thomas Malcherek at the University of Hamburg and at DESY and Lee A. Groat, University of British Columbia. The research was financially supported by the DFG via SPP 1415 and the University of Hamburg.

References

[1] J. A. Speer, G. V. Gibbs, The crystal structure of synthetic titanite, CaTiOSiO4, and the domain texture of natural titanites. Am. Mineral.1976, 61, 238.Search in Google Scholar

[2] M. Taylor, G. E. Brown, High-temperature structural study of the P21/a ↔ A2/a phase transition in synthetic titanite, CaTiSiO5. Am. Mineral.1976, 61, 435.Search in Google Scholar

[3] M. Zhang, E. K. H. Salje, U. Bismayer, Structural phase transition near 825 K in titanite: evidence from infrared spectroscopic observations. Am. Mineral.1997, 82, 30.Search in Google Scholar

[4] S. Kek, M. Aroyo, U. Bismayer, C. Schmidt, K. Eichhorn, H. G. Krane, The two-step phase transition of titanite, CaTiSiO5: a synchrotron radiation study. Z. Kristallogr.1997, 212, 9.Search in Google Scholar

[5] E. K. H. Salje, C. Schmidt, U. Bismayer, Structural phase transition in titanite, CaTiSiO5: a raman spectroscopic study. Phys. Chem. Miner.1993, 19, 502.Search in Google Scholar

[6] E. K. H. Salje, D. J. Safarik, R. D. Taylor, M. P. Pasternak, K. A. Modic, L. A. Groat, J. C. Lashley, Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5). J. Phys.: Cond. Matt.2011, 23, 1.Search in Google Scholar

[7] U. Bismayer, W. Schmahl, C. Schmidt, L. A. Groat, Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO5. Phys. Chem. Miner.1992, 19, 260.Search in Google Scholar

[8] H. W. Meyer, M. Zhang, U. Bismayer, E. K. H. Salje, C. Schmidt, S. Kek, W. Morgenroth, T. Bleser, Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Trans.1996, 59, 39.Search in Google Scholar

[9] T. Malcherek, C. Paulmann, M. C. Domeneghetti, U. Bismayer, Diffuse scattering anisotropy and the P21/a – A2/a phase transition in titanite, CaTiOSiO4. J. Appl. Crystallogr.2001, 34, 108.Search in Google Scholar

[10] J. Chrosch, U. Bismayer, E. K. H. Salje, Anti-phase boundaries and phase transitions in titanite: an X-ray diffraction study. Am. Mineral.1997, 82, 677.Search in Google Scholar

[11] T. Malcherek, C. M. Domeneghetti, V. Tazzoli, E. K. H. Salje, U. Bismayer, A high temperature diffraction study of synthetic titanite CaTiOSiO4. Phase Transit.1999, 69, 119.Search in Google Scholar

[12] B. J. Paul, P. Cerny, R. Chapman, Niobian titanite from the huron claim pegmatite, southeastern Manitoba. Can. Mineral.1981, 19, 549.Search in Google Scholar

[13] C. L. Hollabaugh, F. F. Foit Jr., The crystal structure of an Al-rich titanite from Grisons, Switzerland. Am. Mineral.1984, 69, 725.Search in Google Scholar

[14] I. J. Muir, J. B. Metson, G. M. Bancroft, 57Fe Mössbauer spectra of perovskite and titanite. Can. Mineral.1984, 22, 689.Search in Google Scholar

[15] L. A. Groat, F. C. Hawthorne, R. T. Carter, T. S. Ercit, Tantalian niobian titanite from the Irgon Claim, Southeast Manitoba. Can. Mineral.1985, 23, 569.Search in Google Scholar

[16] F. C. Hawthorne, L. A. Groat, M. Raudsepp, N. A. Ball, M. Kimata, F. D. Spike, R. Gaba, N. M. Halden, G. R. Lumpkin, R. C. Ewing, R. B. Greegor, F. W. Lytle, T. S. Ercit, G. R. Rossman, F. J. Wicks, R. A. Ramik, B. L. Sherriff, M. E. Fleet, C. McCammon, Alpha-decay damage in titanite. Am. Miner.1991, 76, 370.Search in Google Scholar

[17] J. Chrosch, M. Colombo, T. Malcherek, E. K. H. Salje, L. A. Groat, U. Bismayer, Thermal annealing of radiation damaged titanite. Am. Mineral.1998, 83, 1083.Search in Google Scholar

[18] M. Gaft, L. Nagli, R. Reisfeld, G. Panczer, Laser-induced time-resolved luminescence of natural titanite CaTiOSiO4. Opt. Mat.2003, 24, 231.Search in Google Scholar

[19] C. L. Hollabaugh, P. E. Rosenburg, Substitution of Ti for Si in titanite and new end-member cell dimensions for titanite. Am. Mineral.1983, 68, 177.Search in Google Scholar

[20] R. C. Ewing, W. J. Weber, Jr. Clinard, Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energ.1995, 29, 63.Search in Google Scholar

[21] E. R. Vance, M. L. Carter, B. D. Begg, R. A. Day, S. H. F. Leung, Solid solubilities of Pu, U, Hf, and Gd in candidate ceramic phases for actinide waste immobilization. Mater. Res. Soc. Symp. Proc.2000, 608, 431.Search in Google Scholar

[22] S. V. Stefanovsky, S. V. Yudintsev, B. S. Nikonov, B. I. Omelianenko, M. I. Lapina, Isomorphic capacity of synthetic sphene with respect to Gd and U. Mater. Res. Soc. Symp.2000, 608, 455.Search in Google Scholar

[23] R. S. Dixton, The Canadian Nuclear Fuel Waste Management Programm a summary of the Program and Progress to 1984 December. Scientific Document Distribution Office Atomic Energy of Canada Limited, Chalk River, Ontario, Canada (1986). ISSN 0067–0367.Search in Google Scholar

[24] P. J. Hayward, Glass-ceramics. in Radiactive Waste Formas for the Future, (Eds. W. Lutze and R. C. Ewing) North-Holland, Amsterdam, p. 427, 1988.Search in Google Scholar

[25] R. C. Ewing, B. C. Chakoumakos, G. R. Lumpkin, T. Murakami, R. B. Greegor, F. W. Lytle, Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear waste forms. Nucl. Instrum. Methods Phys. Res. Sec. B1988, 32, 487.10.1016/0168-583X(88)90259-5Search in Google Scholar

[26] R. C. Ewing, A. Meldrum, L. M. Wang, S. X. Wang, Radiation-induced amorphization. in Reviews in Mineralogy and Geochemistry, P. H. Ribbe, series Edition, (Eds. S. A. T. Redfern and M. A. Carpenter) Mineralogical Society America, Washington, USA, p. 319, 2000.10.2138/rmg.2000.39.12Search in Google Scholar

[27] R. C. Ewing, Ceramic matrices for plutonium disposition. Prog. Nucl. Energ.2007, 49, 635.Search in Google Scholar

[28] R. C. Ewing, Nuclear fuel cycle: environmental impact. Mater. Res. Soc. B.2008, 33, 338.Search in Google Scholar

[29] T. Beirau, B. Mihailova, G. Matveeva, U. Kolb, T. Malcherek, L. A. Groat, U. Bismayer, Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite. Am. Mineral.2012, 97, 1354.Search in Google Scholar

[30] E. K. H. Salje, R. D. Taylor, D. J. Safarik, J. C. Lashley, L. A. Groat, U. Bismayer, R. J. Evans, R. Friedman, Evidence for direct impact damage in metamict titanite CaTiSiO5. J. Phys. Cond. Matt.2012, 24, 1.Search in Google Scholar

[31] E. R. Vance, J. B. Metson, Radiation damage in natural titanites. Phys. Chem. Miner.1985, 12, 255.Search in Google Scholar

[32] R. D. Tucker, L. D. Ashwal, M. J. Handke, M. A. Hamilton, M. Le Grange, R. A. Rambeloson, U-Pb geochronology and isotope geochemistry of the Archean and Proterozoic rocks of North-Central Madagascar. J. Geol.1999, 107, 135.Search in Google Scholar

[33] L. Nasdala, M. Wenzel, G. Vavra, G. Irmer, T. Wenzel, B. Kober, Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral.2001, 141, 125.Search in Google Scholar

[34] R. C. Ewing, The metamict state: 1993 – the centennial. Nucl. Instrum. Meth. Phys. Res. B1994, 91, 22.10.1016/0168-583X(94)96186-7Search in Google Scholar

[35] E. K. H. Salje, D. J. Safarik, J. C. Lashley, L. A. Groat, U. Bismayer, Elastic softening of metamict titanite CaTiSiO5: radiation damage and annealing. Am. Mineral.2011, 96, 1254.Search in Google Scholar

[36] G. R. Lumpkin, R. K. Eby, R. C. Ewing, Alpha-recoil damage in titanite (CaTiSiO5) – Direct observation and annealing study using high-resolution transmission electron-microscopy. J. Mater. Res.1991, 6, 560.Search in Google Scholar

[37] R. C. Ewing, Materials science – displaced by radiation. Nature2007, 445, 161.10.1038/445161aSearch in Google Scholar PubMed

[38] R. C. Ewing, Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Miner. Mag.2011, 75, 2359.Search in Google Scholar

[39] K. O. Trachenko, M. T. Dove, E. K. H. Salje, Atomistic modeling of radiation damage in zircon. Inst. Phys. Pub.2001, 13, 1947.Search in Google Scholar

[40] T. Beirau, U. Bismayer, B. Mihailova, C. Paulmann, L. Groat, Structural phenomena of metamict titanite: a synchrotron, X-ray diffraction and vibrational spectroscopic study. Phase Trans.2010, 83, 694.Search in Google Scholar

[41] K. Holenyi, H. Annersten, Iron in titanite – A Mössbauer-spectroscopic study. Can. Mineral.1987, 25, 429.Search in Google Scholar

[42] U. Bismayer, C. Paulmann, L. Groat, M. Zhang, Local phenomena in metamict titanite. Acta Phys. Pol. A2010, 117, 74.10.12693/APhysPolA.117.74Search in Google Scholar

[43] F. Farges, Fivefold-coordinated Ti4+ in metamict zirconolite and titanite: a new occurrence shown by Ti K-edge XANES spectroscopy. Am. Mineral.1997, 82, 44.Search in Google Scholar

[44] M. Zhang, E. K. H. Salje, U. Bismayer, L. A. Groat, T. Malcherek, Metamictization and recrystallization of titanite: an infrared spectroscopic study. Am. Mineral.2002, 87, 882.Search in Google Scholar

[45] A. M. Heyns, P. M. Harden, L. C. Prinsloo, Resonance Raman study of the high-pressure phase transition in chromium-doped titanite, CaTiOSiO4. J. Raman Spectrosc.2000, 31, 837.Search in Google Scholar

[46] T. Geisler, R. T. Pidgeon, Raman scattering from metamict zircon: comments on “Metamictisation of natural zircon: ac cumulation versus thermal annealing of radioactivity-induced damage’’ by Nasdala et al. 2001. Contrib. Mineral. Petr.2002, 143, 750.Search in Google Scholar

[47] S. A. Hayward, J. Chrosch, E. K. H. Salje, M. Carpenter, Thickness of pericline twin walls in anorthoclase: an X-ray diffraction study. Eur. J. Mineral.1996, 8, 1301.Search in Google Scholar

[48] E. K. H. Salje, U. Bismayer, S. Hayward, J. Novak, Twin walls and hierarchical mesoscopic structures. Mineral. Mag.2000, 64, 201.Search in Google Scholar

[49] W. T. Lee, E. K. H. Salje, U. Bismayer, Domain wall diffusion and domain wall softening. J. Phys. Cond. Matter2003, 15, 1353.10.1088/0953-8984/15/8/318Search in Google Scholar

[50] W. T. Lee, E. K. H. Salje, U. Bismayer, Domain wall structure and domain wall strain. J. Appl. Phys.2003, 93, 9890.Search in Google Scholar

[51] W. T. Lee, E. K. H. Salje, L. Goncalves-Ferreira, M. Daraktchiev, U. Bismayer, Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3. Phys. Rev. B 2006, 73, 214110 (5pp.).10.1103/PhysRevB.73.214110Search in Google Scholar

[52] T. Beirau, P. Guglielmi, C. Paulmann, G. A. Schneider, L. A. Groat, T. Malcherek, E. K. H. Salje, U. Bismayer, Interfaces in metamict titanite: the macroscopic mechanical properties after stepwise annealing. Phase Trans.2013, 86, 23.Search in Google Scholar

[53] R. J. Angel, M. Kunz, R. Miletich, A. B. Woodland, M. Koch, R. L. Knoche, Effect of isovalent Si,Ti substitution on the bulk moduli of Ca(Ti1xSix)SiO5 titanites. Am. Mineral.1999, 84, 282.Search in Google Scholar

[54] J. B. Higgins, P. H. Ribbe, The crystal chemistry and space groups of natural and synthetic titanites. Am. Mineral.1976, 61, 878.Search in Google Scholar

[55] J. M. Hughes, E. S. Bloodaxe, J. M. Hanchar, E. E. Foord, Incorporation of rare earth elements in titanite: stabilization of the A2/a dimorph by creation of antiphase boundaries. Am. Mineral.1997, 82, 512.Search in Google Scholar

[56] U. Bismayer, M. Zhang, L. A. Groat, E. K. H. Salje, H. W. Meyer, The β-γ phase transition in titanite and the isosymmetric analogue in malayaite. Phase Trans.1999, 68, 545.Search in Google Scholar

[57] T. Beirau, B. Mihailova, T. Malcherek, C. Paulmann, L. A. Groat, U. Bismayer, Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. Can. Mineral.2014, 52, 91.Search in Google Scholar

[58] C. Paulmann, U. Bismayer, L. A. Groat, Thermal annealing of metamict titanite: a synchrotron radiation and optical birefringence study. Z. Kristallogr.2000, 215, 678.Search in Google Scholar

[59] H. W. Meyer, U. Bismayer, G. Adiwidjaja, M. Zhang, L. Nistor, G. Van Tendeloo, Natural titanite and malayaite: structural investigations and the 500 K anomaly. Phase Trans.1998, 67, 27.Search in Google Scholar

Received: 2014-2-27
Accepted: 2014-5-29
Published Online: 2014-6-25
Published in Print: 2014-8-1

©2014 by De Gruyter

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2014-1745/html
Scroll to top button