Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 229, Issue 9


Crystal architecture of the low melting nitrogen heterocycles tetrafluoropyrimidine and trifluorotriazine

Vera Vasylyeva / Klaus Merz
Published Online: 2014-08-13 | DOI: https://doi.org/10.1515/zkri-2014-1730


In situ cryo-crystallization was used to obtain single crystals of the low-melting tetrafluoropyrimidine and trifluorotriazine in order to explore the molecular aggregation of nitrogen-containing aromatic compounds with weak directing substituents in the solid state. A comparative crystallographic study of the series hexafluorobenzene, pentafluoropyridine, tetrafluoropyrimidine and trifluorotriazine was performed to clarify an influence of a successive substitution of C-F groups by a further nitrogen atom on the crystal architecture. Due to the absence of the hydrogen atoms different supramolecular motifs based on short F···F contacts were observed in all crystal structures.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structure; fluorine-fluorine interactions; in situ cryo-crystallization; nitrogen heterocycles


  • [1]

    K. Merz, V. Vasylyeva, Development and boundaries in the field of supramolecular synthons. CrystEngComm 2010, 12, 3989.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    G. R. Desiraju, Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342.CrossrefGoogle Scholar

  • [3]

    P. Metrangolo, G. Resnati, Halogen bonding: Where we are and where we are going. Cryst. Growth Des. 2013, 12, 5835.Google Scholar

  • [4]

    S. L. Sunil, S. K. Nayak, V. R. Hathwar, D. Chopra, T. N. Guru Row, Pharmaceutical salts and co-crystals. Chapter: Role of fluorine in weak interactions in co-crystals. RSC Publishing, 2012, 29.Google Scholar

  • [5]

    M. Karanam, A. R. Choudhury, Study of halogen-mediated weak interactions in a series of halogen-substituted Azobenzenes. Cryst. Growth Des. 2013, 13, 4803.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    S. K. Nayak, M. K. Reddy, T. N. Guru Row, D. Chopra, Role of Hetero-Halogen (F···X, X = Cl, Br, and I) or Homo-Halogen (X···X, X = F, Cl, Br, and I) interactions in substituted Benzanilides. Cryst. Growth Des. 2011, 11, 1578.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    J. D. Dunitz, R. Taylor, Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J. 1997, 3, 89.CrossrefGoogle Scholar

  • [8]

    J. A. K. Howard, V. J. Hoy, D. O’Hagan, D. T. Smith, How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996, 52, 12613.CrossrefGoogle Scholar

  • [9]

    J. D. Dunitz, Organic fluorine: Odd man out. ChemBioChem 2004, 5, 614.PubMedCrossrefGoogle Scholar

  • [10]

    D. Chopra, Is organic fluorine really “not” polarizable?. Cryst. Growth Des. 2012, 12, 541.Web of ScienceCrossrefGoogle Scholar

  • [11]

    R. E. Banks, B. E. Smart, J. C. Tatlow, Organofluorine Chemistry. Principles and Commercial Application, Plenum Press, New York, 1994.Google Scholar

  • [12]

    V. Vasylyeva, K. Merz, Aggregation of fluorine-substituted pyridines. J. Fluor. Chem. 2010, 131, 446.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    V. R. Thalladi, H.-C. Weiss, D. Bläser, R. Boese, A. Nagnia, G. R. Desiraju, C-H...F Interactions in the crystal structures of some fluorobenzenes. J. Am. Chem. Soc. 1998, 120, 8702.CrossrefGoogle Scholar

  • [14]

    K. Reichenbächer, H. I. Süss, J. Hulliger, Fluorine in crystal engineering –“the little atom that could”. Chem. Soc. Rev. 2005, 34, 22.CrossrefPubMedGoogle Scholar

  • [15]

    R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496.CrossrefPubMedGoogle Scholar

  • [16]

    G. Kaur, P. Panini, D. Chopra, A. R. Choudhury, Structural investigation of weak intermolecular interactions in fluorine substituted isomeric N-Benzylideneanilines. Cryst. Growth Des. 2012, 12, 5096.Web of ScienceCrossrefGoogle Scholar

  • [17]

    A. G. Dikundwar, T. N. Guru Row, Evidence for the “Amphoteric” nature of fluorine in halogen bonds: an instance of Cl···F contact. Cryst. Growth Des. 2012, 12, 1713.Web of ScienceCrossrefGoogle Scholar

  • [18]

    S. Tothadi, S. Joseph, G. R. Desiraju, Synthon modularity in cocrystals of 4-Bromobenzamide with n-Alkanedicarboxylic acids: Type I and Type II Halogen···Halogen interactions. Cryst. Growth Des. 2013, 13, 3242.Web of ScienceGoogle Scholar

  • [19]

    V. Vasylyeva, O. V. Shishkin, V. A. Maleev, K. Merz, Crystal structures of fluorinated pyridines from geometrical and energetic perspectives. Cryst. Growth Des. 2012, 12, 1032.Web of ScienceCrossrefGoogle Scholar

  • [20]

    D. Chopra, T. N. Guru Row, Role of organic fluorine in crystal engineering. CrystEngComm 2011, 13, 2175.CrossrefGoogle Scholar

  • [21]

    G. R. Desiraju, Chemistry beyond the molecule. Nature 2001, 412, 397.PubMedCrossrefGoogle Scholar

  • [22]

    K. E. Maly, Acenes vs N-Heteroacenes: The effect of N-substitution on the structural features of crystals of polycyclic aromatic hydrocarbons. Cryst. Growth Des. 2011, 11, 5628.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    X. Mei, C. Wolf, Formation of new polymorphs of acridine using dicarboxylic acids as crystallisation templates in solution. Cryst. Growth Des. 2004, 4, 1099.CrossrefGoogle Scholar

  • [24]

    A. Kupka, V. Vasylyeva, D. W. M. Hofmann, K. V. Yusenko, K. Merz, Solvent and isotopic effects on acridine and deuterated acridine polymorphism. Cryst. Growth Des. 2012, 12, 5966.Web of ScienceCrossrefGoogle Scholar

  • [25]

    N. Boden, P. P. Davis, C. H. Stam, G. A. Wesselink, Solid hexafluorobenzene. I. Crystal structure at 120.deg.K. Mol. Phys. 1973, 25, 81.Google Scholar

  • [26]

    H. Shorafa, D. Mollenhauer, B. Paulus, K. Seppelt, The two structures of the hexafluorobenzene radical cation C6F6. Angew. Chem., Int. Ed. 2009, 48, 5845.CrossrefGoogle Scholar

  • [27]

    A. Olejniczak, A. Katrusiak, A. Vij, Interpenetrated structure and compressibility studies in pressure frozen pentafluoropyridine crystals at 0.3 and 1.1 GPa. J. Fluor. Chem. 2008, 129, 173.Web of ScienceGoogle Scholar

  • [28]

    M. T. Kirchner, D. Bläser, R. Boese, T. S. Thakur, G. R. Desiraju, Weak C—H...O hydrogen bonds in anisaldehyde, salicylaldehyde and cinnamaldehyde. Acta Crystallogr. 2011, C67, o387.Web of ScienceGoogle Scholar

  • [29]

    S. K. Nayak, G. Terraneo, A. Forni, P. Metrangolo, G. Resnati, C–Br···O supramolecular synthon: in situ cryocrystallography of low melting halogen-bonded complexes. CrystEngComm 2012, 14, 4259.CrossrefGoogle Scholar

  • [30]

    V. Vasylyeva, K. Merz, Fluorobenzonitriles: influence of the substitution pattern on melting and crystallization properties. Cryst. Growth Des. 2010, 10, 4250.Web of ScienceCrossrefGoogle Scholar

  • [31]

    D. Chopra, T. N. Guru Row, In situ cryo crystallography: pathways to study intermolecular interactions. J. Ind. Inst. Sci. 2007, 87, 167.Google Scholar

  • [32]

    A. R. Choudhury, N. Winterton, A. Steiner, A. I. Cooper, K. A. Johnson, In situ crystallization of low-melting ionic liquids. J. Am. Chem. Soc. 2005, 127, 16792.CrossrefGoogle Scholar

  • [33]

    D. S. Yufit, J. A. K. Howard, Low-melting molecular complexes of chloroform. CrystEngComm 2010, 12, 737.CrossrefWeb of ScienceGoogle Scholar

  • [34]

    R. Boese, M. Nussbaumer, Correlation, Transformations and Interactions in Organic Crystal Chemistry, International Union of Crystallography Oxford University Press, Oxford, 1974.Google Scholar

  • [35]

    G. R. Desiraju, On the presence of multiple molecules in the crystal asymmetric unit (Z′>1). CrystEngComm 2007, 9, 91.Web of ScienceCrossrefGoogle Scholar

  • [36]

    D. Mootz, H. G. Wussow, Crystal structures of pyridine and pyridine trihydrate. J. Chem. Phys. 1981, 75, 1517.Google Scholar

About the article

Corresponding author: Vera Vasylyeva, Inorganic Chemistry I, Ruhr-University Bochum, Universitaetstr. 150, 44801 Bochum, Germany, E-mail:

Received: 2014-01-15

Accepted: 2014-06-24

Published Online: 2014-08-13

Published in Print: 2014-09-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 229, Issue 9, Pages 603–608, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1730.

Export Citation

©2014 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in