Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 229, Issue 9


Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes

Amol G. Dikundwar
  • Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ranganathan Sathishkumar
  • Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tayur N. Guru Row
  • Corresponding author
  • Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-04 | DOI: https://doi.org/10.1515/zkri-2014-1750


Crystal structures of a series of isomers of chlorofluorobenzene, bromofluorobenzene and iodofluorobenzene, all of which are liquids under ambient conditions, are determined by a technique of in situ cryocrystallography. These simple dihalo substituted benzenes provide clear insights into subtle interplay of packing interactions preferred by fluorine and heavier halogens for example, C–H···X hydrogen bonds vs. X···X halogen bonds (X=F, Cl, Br, I). The interaction patterns noted here are purely characteristic of halogens, having not been influenced by other stronger interactions. Variability of principal supramolecular synthons among the isomers highlights the importance of molecular shape and relative position of interacting atoms while preserving the basic intermolecular bonds. Mutually exclusive occurrence of homo (I···I) and hetero (I···F) halogen bonds in polymorphs of 4-iodofluorobenzene questions the robustness and reliability of these interactions.

Keywords: cryocrystallography; halobenzenes; halogen bond; hydrogen bond; Organic fluorine


  • [1]

    H. S. Kaufman, I. Fankuchen, A Low temperature single crystal X-ray diffraction technique. Rev. Sci. Instr. 1949, 20, 733.CrossrefGoogle Scholar

  • [2]

    S. C. Abrahams, R. L. Collin, W. N. Lipscomb, T. B. Reed, Further techniques in single-crystal X-ray diffraction studies at low temperatures. Rev. Sci. Instr. 1950, 21, 396.CrossrefGoogle Scholar

  • [3]

    M. A. Viswamitra, A low-temperature Weissenberg camera. J. Sci. Inst. 1962, 39, 381.CrossrefGoogle Scholar

  • [4]

    M. A. Viswamitra, K. K. Kannan, Simple gas-cooling device for low temperature investigations with Weissenberg cameras. J. Sci. Inst. 1962, 39, 318.CrossrefGoogle Scholar

  • [5]

    R. Boese, M. Nussbaumer, In situ crystallization techniques. in In Organic Crystal Chemistry, (Eds. D. W. Jones) Oxford University Press: Oxford, UK, pp. 20–37, 1994. www.sci-ohcd.eu.

  • [6]

    D. Chopra, T. N. Guru Row, In situ Cryocrystallization: pathways to study intermolecular interactions. J. Ind. Ins. Sci. 2007, 87, 167.Google Scholar

  • [7]

    E. V. Boldyreva, High-pressure diffraction studies of molecular organic solids. A personal view. Acta Cryst. 2008, A64, 218.CrossrefGoogle Scholar

  • [8]

    A. Katrusiak, High-pressure crystallography. Acta Cryst. 2008, A64, 135.CrossrefGoogle Scholar

  • [9]

    W. N. Lipscomb, The boranes and their relatives. Science 1977, 196, 1047.CrossrefPubMedGoogle Scholar

  • [10]

    W. N. Lipscomb, Boron Hydrides. W. A. Benjamin Inc., New York, 1963.Google Scholar

  • [11]

    M. M. Viswamitra, K. K. Kannan, Molecular dimensions and crystal structure of dimethyl sulphoxide at –60° C. Nature 1966, 209, 1016.CrossrefGoogle Scholar

  • [12]

    R. Boese, M. T. Kirchner, W. E. Billups, L. R. Norman, Cocrystallization with acetylene: molecular complexes with acetone and dimethyl sulfoxide. Angew. Chem. Int. Ed. 2003, 42, 1961.CrossrefGoogle Scholar

  • [13]

    J. E. Davis, A. D. Bond, Quinoline. Acta Crystallogr. 2001, E57, o947.Google Scholar

  • [14]

    A. D. Bond, In situ co-crystallisation as a tool for low-temperature crystal engineering. Chem. Commun. 2003, 250.Google Scholar

  • [15]

    R. Boese, H. C. Weiss, D. Bläser, The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-Butane to n-Nonane at 90 K. Angew. Chem. Int. Ed. Engl. 1999, 38, 988.CrossrefGoogle Scholar

  • [16]

    V. R. Thalladi, R. Boese, Why is the melting point of propane the lowest among n-alkanes?. New J. Chem. 2000, 24, 579.CrossrefGoogle Scholar

  • [17]

    V. R. Thalladi, H. C. Weiss, R. Boese, The melting point alternation in alpha,omega-alkanediols and alpha,omega-alkanediamines: interplay between hydrogen bonding and hydrophobic interactions. Angew. Chem. Int. Ed. Engl. 2000, 39, 918.PubMedCrossrefGoogle Scholar

  • [18]

    V. R. Thalladi, R. Boese, H. C. Weiss, The melting point alternation in alpha,omega-alkanedithiols. J. Am. Chem. Soc. 2000, 122, 1186.CrossrefGoogle Scholar

  • [19]

    A. D. Bond, Inversion of the melting point alternation in n-alkyl carboxylic acids by co-crystallization with pyrazine, CrstEngComm. 2006, 8, 333.Google Scholar

  • [20]

    R. Boese, D. Blaser, O. Heinemann, Y. Abramov, V. Tsirelson, P. Blaha, K. Schwarz, Evidence for electron density features that accompany the noble gases solidification. J. Phys. Chem. A 1999, 103, 6209.CrossrefGoogle Scholar

  • [21]

    A. A. Yakovenko, M. Y. Antipin, T. V. Timofeeva, Molecular and crystal structure of low melting nitrotoluene isomers cryst. Growth Des. 2009, 9, 57.CrossrefGoogle Scholar

  • [22]

    V. R. Thalladi, H. C. Weiss, D. Blaser, R. Boese, A. Nangia, G. R. Desiraju, C-H...F Interactions in the crystal structures of some fluorobenzenes. J. Am. Chem. Soc. 1998, 120, 8702.CrossrefGoogle Scholar

  • [23]

    J. D. Dunitz, R. Taylor, Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J. 1997, 3, 89.CrossrefGoogle Scholar

  • [24]

    J. D. Dunitz, Organic fluorine: odd man out. ChemBioChem 2004, 5, 614.PubMedCrossrefGoogle Scholar

  • [25]

    L. Shimoni, J. P. Glusker, The geometry of intermolecular interactions in some crystalline fluorine containing organic compounds. Struct. Chem. 1994, 5, 383.CrossrefGoogle Scholar

  • [26]

    J. A. K. Howard, V. J. Hoy, D. O’Hagan, G. T. Smith, How good is fluorine as a hydrogen bond acceptor?. Tetrahedron 1996, 52, 12613.CrossrefGoogle Scholar

  • [27]

    K. Reichenbacher, H. I. Suss, J. Hulliger, Fluorine in crystal engineering – “the little atom that could”. Chem. Soc. Rev. 2005, 34, 22.CrossrefPubMedGoogle Scholar

  • [28]

    D. Chopra, T. N. Guru Row, Role of organic fluorine in crystal engineering. CrystEngComm 2011, 13, 2175.CrossrefGoogle Scholar

  • [29]

    R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496.CrossrefPubMedGoogle Scholar

  • [30]

    V. R. Hathwar, T. N. Guru Row, Nature of Cl···Cl intermolecular interactions via experimental and theoretical charge density analysis: correlation of polar flattening effects with geometry. J. Phys. Chem. A, 2010, 114, 13434.CrossrefGoogle Scholar

  • [31]

    N. Ramasubbu, R. Parthasarathy, P. Murray-Rust, Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J. Am. Chem. Soc. 1986, 108, 4308.CrossrefGoogle Scholar

  • [32]

    T. Sakurai, M. Sundaralingam, G. A. Jeffrey, A nuclear quadrupole resonance and X-ray study of the crystal structure of 2,5-dichloroaniline. Acta Crystallogr. 1963, 16, 354.CrossrefGoogle Scholar

  • [33]

    T. Clark, M. Hennemann, J. S. Murray, P. Politzer, Halogen bonding: the σ-hole. J. Mol. Model. 2007, 13, 291.CrossrefGoogle Scholar

  • [34]

    P. Politzer, J. S. Murray, T. Clark, Halogen bonding and other σ-hole interactions: a perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178.CrossrefPubMedGoogle Scholar

  • [35]

    P. Politzer, J. S. Murray, Halogen bonding: an interim discussion. ChemPhysChem 2013, 14, 278.CrossrefPubMedGoogle Scholar

  • [36]

    D. Chopra, T. S. Cameron, J. D. Ferrara, T. N. Guru Row, Pointers toward the occurrence of C-F...F-C interaction: Experimental charge density analysis of 1-(4-fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one and 1-(4-fluorophenyl)-6-methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline. J. Phys. Chem. A, 2006, 110, 10465.CrossrefGoogle Scholar

  • [37]

    V. R. Hathwar, T. N. Guru Row, Charge density analysis of hetero-halogen (Cl···F) and homo-halogen (F···F) intermolecular interactions in molecular crystals: Importance of the extent of Polarizability. Cryst. Growth Des. 2011, 11, 1338.CrossrefGoogle Scholar

  • [38]

    A. G. Dikundwar, T. N. Guru Row, Evidence for the “amphoteric” nature of fluorine in halogen bonds: an instance of Cl...F contact. Cryst. Growth Des. 2012, 12, 1713.CrossrefGoogle Scholar

  • [39]

    M. S. Pavan, K. D. Prasad, T. N. Guru Row, Halogen bonding in fluorine: experimental charge density study on intermolecular F…F and F…S donor–acceptor contacts. ChemComm 2013, 49, 7558.Google Scholar

  • [40]

    P. Garca, S. Dahaoui, C. Katan, M. Souhassou, C. Lecomte, On the accurate estimation of intermolecular interactions and charge transfer: the case of TTF-CA. Faraday Discuss. 2007, 135, 217.CrossrefGoogle Scholar

  • [41]

    T. T. T. Bui, S. Dahaoui, C. Lecomte, G. R. Desiraju, E. Espinosa, The nature of halogen halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 2009, 48, 3838.CrossrefGoogle Scholar

  • [42]

    P. Politzer, J. S. Murray, M. C. Concha, σ-hole bonding between like atoms: a fallacy of atomic charges. J. Mol. Model. 2008, 14, 659.CrossrefGoogle Scholar

  • [43]

    R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013, 56, 1363.CrossrefGoogle Scholar

  • [44]

    V. R. Pedireddi, D. S. Reddy, B. S. Goud, D. C. Craig, A. D. Rae, G. R. Desiraju, The nature of halogen…halogen interactions and the crystal structure of 1,3,5,7-tetraiodoadamantane. J. Chem. Soc. Perkin Trans. 1994, 2, 2353.CrossrefGoogle Scholar

  • [45]

    Bruker 2004, SMART (V 5.628), SAINT (V 6.45a), RLATT (V 3.0), XPREP, SHELXTL; Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar

  • [46]

    S. L. Masters, I. D. Mackie, D. A. Wann, H. E. Robertson, D. W. H. Rankin, S. Parsons, Unusual asymmetry in halobenzenes, a solid-state, gas-phase and theoretical investigation. Struct. Chem. 2011, 22, 279.CrossrefGoogle Scholar

  • [47]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112.CrossrefGoogle Scholar

  • [48]

    L. Farrugia, WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849.CrossrefGoogle Scholar

  • [49]

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339.CrossrefGoogle Scholar

  • [50]

    M. Nardelli, PARST95-an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Cryst. 1995, 28, 659.CrossrefGoogle Scholar

  • [51]

    A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7.CrossrefGoogle Scholar

  • [52]

    D. J. Watkin, C. K. Prout, L. J. Pearce, CAMERON. Chemical crystallography laboratory, Oxford, England, 1996.Google Scholar

  • [53]

    C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. Van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Cryst. 2006, 39, 453.CrossrefGoogle Scholar

  • [54]

    S. G. Biswas, Crystal structure of chlorobenzene and bromobenzene at –180°C. Acta Crystallogr. 1958, 11, 882.Google Scholar

  • [55]

    K. Merz, Substitution effect on crystal packings of iodobenzonitriles and iodophenols. Cryst. Growth Des. 2006, 6, 1615.CrossrefGoogle Scholar

About the article

Corresponding author: Tayur N. Guru Row, Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India, Phone: +91 80-23932796, Fax: +91 80-23601310, E-mail:

Received: 2014-03-16

Accepted: 2014-07-18

Published Online: 2014-09-04

Published in Print: 2014-09-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 229, Issue 9, Pages 609–624, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1750.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Cody Ross Pitts, Maxime A. Siegler, and Thomas Lectka
The Journal of Organic Chemistry, 2017, Volume 82, Number 7, Page 3996
Kyrill Yu. Suponitsky, N.I. Burakov, Alexander L. Kanibolotsky, and Vasilii A. Mikhailov
The Journal of Physical Chemistry A, 2016, Volume 120, Number 24, Page 4179

Comments (0)

Please log in or register to comment.
Log in