[1]

J. W. Yeh, High-entropy multi-elements alloys, Patent US2002/0159914A1.Google Scholar

[2]

J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. *Metall. Mater. Trans. A* **2004**, *35*, 2533.CrossrefGoogle Scholar

[3]

J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. *Adv. Eng. Mater.* **2004**, *6*, 299.CrossrefGoogle Scholar

[4]

J. W. Yeh, Recent progress in high-entropy alloys. *Ann. Chim. Sci. Mat.* **2006**, *31*, 633.CrossrefGoogle Scholar

[5]

Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy alloys. *Prog. Mater. Sci.* **2014**, *61*, 1.CrossrefGoogle Scholar

[6]

D. A. Porter, K. E. Easterling, *Phase Transformations in Metals and Alloys*,2nd ed., CRC Press, Boca Raton, **2004**.Google Scholar

[7]

F. Otto, Y. Yang, H. Bei, E. P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. *Acta Mater.* **2013**, *61*, 2628.CrossrefGoogle Scholar

[8]

I. Muller, Entropy and energy, – a universal competition. *Entropy* **2008**, *10*, 462.CrossrefGoogle Scholar

[9]

Y. Zhang, Y. Zhou, Solid solution formation criteria for high entropy alloys. *Mater. Sci. Forum* **2007**, *561–565*, 1337.Google Scholar

[10]

C. Zhang, F. Zhang, S. L. Chen, W. S. Cao, Computational thermodynamics aided high-entropy alloy design. *J. Miner. Met. Mater. Soc.* **2012**, *64*, 839.CrossrefGoogle Scholar

[11]

C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, S. Y. Chang, Microstructure characterization of Al_{x}CoCrCuFeNi high-entropy alloy system with multiprincipal elements. *Metall. Mater. Trans. A* **2005**, *36*, 881.CrossrefGoogle Scholar

[12]

C. Y. Hsu, C. C. Juan, S. T. Chen, T. S. Sheu, J. W. Yeh, S. K. Chen, Phase diagrams of high-entropy alloy system Al-Co-Cr-Fe-Mo-Ni. *JOM* **2013**, *65*, 1848.Google Scholar

[13]

S. G. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. *Mater. Sci. Eng. A* **2012**, *532*, 480.Google Scholar

[14]

X. F. Wang, Y. Zhang, Y. Qiao, G. L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTi_{x} alloys. *Intermetallics* **2007**, *15*, 357.CrossrefGoogle Scholar

[15]

F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, U. R. Kattner, An understanding of high entropy alloys from phase diagram calculations. *Calphad* **2014**, *45*, 1.CrossrefGoogle Scholar

[16]

Y. F. Kao, T. J. Chen, S. K. Chen, J. W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al_{x}CoCrFeNi (0≤ x ≤ 2) high-entropy alloys. *J. Alloys Compd.* **2009**, *488*, 57.Google Scholar

[17]

O. N. Senkov, S. V. Senkova, C. Woodward, D. B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis. *Acta Mater.* **2013**, *61*, 1545.CrossrefGoogle Scholar

[18]

M. C. Gao, D. E. Alman, Searching for next single-phase high-entropy alloy compositions. *Entropy* **2013**, *15*, 4504.CrossrefGoogle Scholar

[19]

G. Bozzolo, R. D. Noebe, P. B. Abel, *Applied Computational Materials Modeling: Theory, Simulation and Experiment*, Springer, New York, p. 502, **2007**.Google Scholar

[20]

O. Senkov, F. Zhang, J. Miller, Phase composition of a CrMo_{0.5}NbTa_{0.5}TiZr high entropy alloy: comparison of experimental and simulated data. *Entropy* **2013**, *15*, 3796.Google Scholar

[21]

M. S. Lucas, G. B. Wilks, L. Mauger, J. A. Munoz, O. N. Senkov, E. Michel, J. Horwath, S. L. Semiatin, M. B. Stone, D. L. Abernathy, E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi. *Appl. Phys. Lett.* **2012**, *100*, 251907.CrossrefGoogle Scholar

[22]

M. S. Lucas, L. Mauger, J. A. Munoz, Y. M. Xiao, A. O. Sheets, S. L. Semiatin, J. Horwath, Z. Turgut, Magnetic and vibrational properties of high-entropy alloys. *J. Appl. Phys*. **2011**, *109*, 07E307.Google Scholar

[23]

W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, J. W. Yeh, Effects of Al addition on the microstructure and mechanical property of Al_{x}CoCrFeNi high-entropy alloys. *Intermetallics* **2012**, *26*, 44.CrossrefGoogle Scholar

[24]

T. T. Shun, L. Y. Chang, M. H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo(x) alloys. *Mater. Charact.* **2012**, *70*, 63.CrossrefGoogle Scholar

[25]

S. Guo, C. Ng, Z. Wang, C. T. Liu, Solid solutioning in equiatomic alloys: limit set by topological instability. *J. Alloys Compd.* **2014**, *583*, 410.Google Scholar

[26]

A. K. Singh, A. Subramaniam, On the formation of disordered solid solutions in multi-component alloys. *J. Alloys Compd.* **2014**, *587*, 113.Google Scholar

[27]

Z. Wu, H. Bei, F. Otto, G. M. Pharr, E. P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. *Intermetallics* **2014**, *46*, 131.CrossrefGoogle Scholar

[28]

L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi_{0.5} alloy casting ingot. *Intermetallics* **2014**, *44*, 37.Google Scholar

[29]

T. T. Shun, Y. C. Du, Microstructure and tensile behaviors of FCC Al_{0.3}CoCrFeNi high entropy alloy. *J. Alloys Compd.* **2009**, *479*, 157.Google Scholar

[30]

T. T. Shun, C. H. Hung, C. F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys. *J. Alloys Compd.* **2010**, *493*, 105.Google Scholar

[31]

T. T. Shun, C. H. Hung, C. F. Lee, The effects of secondary elemental Mo or Ti addition in Al_{0.3}CoCrFeNi high-entropy alloy on age hardening at 700 degrees C. *J. Alloys Compd.* **2010**, *495*, 55.Google Scholar

[32]

A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. *Ultramicroscopy* **2013**, *132*, 212.Google Scholar

[33]

M. H. Tsai, H. Yuan, Morphology, structure and composition of precipitates in Al_{0.3}CoCrCu_{0.5}FeNi high-entropy alloy. *Intermetallics* **2013**, *32*, 329.Google Scholar

[34]

Y. J. Zhou, Y. Zhang, F. J. Wang, G. L. Chen, Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCu_{x}Al_{1-x} solid-solution alloys. *Appl. Phys. Lett.* **2008**, *92*, 241917.CrossrefGoogle Scholar

[35]

G.Y. Ke, S. K. Chen, T. Hsu, J. W. Yeh, FCC and BCC equivalents in as-cast solid solutions of Al_{x}Co_{y}Cr_{z}Cu_{0.5}Fe_{v}Ni_{w} high-entropy alloys. *Ann. Chim. Sci. Mat.* **2006**, *31*, 669.Google Scholar

[36]

C. C. Tung, J. W. Yeh, T. T. Shun, S. K. Chen, Y. S. Huang, H. C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. *Mater. Lett.* **2007**, *61*, 1.CrossrefGoogle Scholar

[37]

Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Solid-solution phase formation rules for multi-component alloys. *Adv. Eng. Mater.* **2008**, *10*, 534.CrossrefGoogle Scholar

[38]

S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. *Acta Mater.* **2011**, *59*, 182.CrossrefGoogle Scholar

[39]

S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. *Ultramicroscopy* **2011**, *111*, 619.CrossrefGoogle Scholar

[40]

A. Manzoni, H. Daoud, S. Mondal, S. van Smaalen, R. Völkl, U. Glatzel, N. Wanderka, Investigation of phases in Al_{23}Co_{15}Cr_{23}Cu_{8}Fe_{15}Ni_{16} and Al_{8}Co_{17}Cr_{17}Cu_{8}Fe_{17}Ni_{33} high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. *J. Alloys Compd.* **2013**, *552*, 430.Google Scholar

[41]

M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, M. H. Chuang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al_{0.5}CoCrCuFeNi high-entropy alloy. *Metall. Mater. Trans. A* **2006**, *37A*, 1363.Google Scholar

[42]

J. M. Zhu, H. M. Fu, H. F. Zhang, A. M. Wang, H. Li, Z. Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. *Mater. Sci. Eng. A* **2010**, *527*, 6975.Google Scholar

[43]

C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, J. W. Yeh, Microstructure and mechanical properties of new AlCo_{x}CrFeMo_{0.5}Ni high-entropy alloys. *Adv. Eng. Mater.* **2010**, *12*, 44.Google Scholar

[44]

C. Y. Hsu, T. S. Sheu, J. W. Yeh, S. K. Chen, Effect of iron content on wear behavior of AlCoCrFe_{x}Mo_{0.5}Ni high-entropy alloys. *Wear* **2010**, *268*, 653.Google Scholar

[45]

C. Y. Hsu, C. C. Juan, W. R. Wang, T. S. Sheu, J. W. Yeh, S. K. Chen, On the superior hot hardness and softening resistance of AlCoCr_{x}FeMo_{0.5}Ni high-entropy alloys. *Mater. Sci. Eng. A* **2011**, *528*, 3581.Google Scholar

[46]

J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang, H. Li, Z. Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo_{x} alloys. *J. Alloys Compd.* **2010**, *497*, 52.Google Scholar

[47]

Y. L. Chou, J. W. Yeh, H. C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co_{1.5}CrFeNi_{1.5}Ti_{0.5}Mo_{x} in aqueous environments. *Corros. Sci.* **2010**, *52*, 2571.Google Scholar

[48]

K. B. Zhang, Z. Y. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAl_{x} high-entropy alloys. *Intermetallics* **2012**, *22*, 24.CrossrefGoogle Scholar

[49]

K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAl_{x} high-entropy alloys. *Mater. Sci. Eng. A* **2009**, *508*, 214.Google Scholar

[50]

M. H. Chuang, M. H. Tsai, W. R. Wang, S. J. Lin, J. W. Yeh, Microstructure and wear behavior of Al_{x}Co_{1.5}CrFeNi_{1.5}Ti_{y} high-entropy alloys. *Acta Mater.* **2011**, *59,* 6308.CrossrefGoogle Scholar

[51]

J. W. Qiao, Microstructural characteristics and mechanical behaviours of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. *Mater. Sci. Forum* **2011**, *688*, 419.Google Scholar

[52]

Y. J. Zhou, Y. Zhang, X. F. Wang, Y. L. Wang, G. L. Chen, Effect of component substitution on the microstructure and mechanical properties of MCoCrFeNiTi_{x}, (M = Cu, Al) solid-solution alloys. *Rare Met.***2008**, *27*, 627.Google Scholar

[53]

Y. J. Zhou, Y. Zhang, F. J. Wang, Y. L. Wang, G. L. Chen, Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi_{0.5} solid-solution alloy. *J. Alloys Compd.* **2008**, *466*, 201.Google Scholar

[54]

F. J. Wang, Y. Zhang, Effect of Co addition on crystal structure and mechanical properties of Ti_{0.5}CrFeNiAlCo high entropy alloy. *Mater. Sci. Eng. A* **2008**, *496*, 214.Google Scholar

[55]

Y. J. Hsu, W. C. Chiang, J. K. Wu, Corrosion behavior of FeCoNiCrCu_{x} high-entropy alloys in 3.5% sodium chloride solution. *Mater. Chem. Phys.* **2005**, *92*, 112.CrossrefGoogle Scholar

[56]

C. M. Lin, H. L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu_{0.5} alloy. *Mater. Chem. Phys.* **2011**, *128*, 50.Google Scholar

[57]

F. J. Wang, Y. Zhang, G. L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy. *J. Alloys Compd.* **2009**, *478*, 321.Google Scholar

[58]

Y. Zhang, X. F. Wang, G. Chen, Y. Qiao, Effect of Ti on the microstructure and properties of CoCrCuFeNiTi_{x} high-entropy alloys. *Ann. Chim. Sci. Mat.* **2006**, *31*, 699.CrossrefGoogle Scholar

[59]

M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, C. P. Tu, Microstructure and properties of Al_{0.5}CoCrCuFeNiTi_{x} (x=0-2.0) high-entropy alloys. *Mater. Trans.* **2006**, *47*, 1395.Google Scholar

[60]

B. S. Li, Y. R. Wang, M. X. Ren, C. Yang, H. Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. *Mater. Sci. Eng. A* **2008**, *498*, 482.CrossrefGoogle Scholar

[61]

Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen, Microstructure and compressive properties of multicomponent Al_{x}(TiVCrMnFeCoNiCu)_{100-x} high-entropy alloys. *Mater. Sci. Eng. A* **2007**, *454/455*, 260.Google Scholar

[62]

B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys. *Mater. Sci. Eng. A* **2004**, *375–377*, 213.Google Scholar

[63]

Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMo_{x} high-entropy alloys. *J. Alloys Compd.* **2013**, *573*, 96.Google Scholar

[64]

B. Ren, Z. X. Liu, D. M. Li, L. Shi, B. Cai, M. X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high-entropy alloy system. *J. Alloys Compd.* **2010**, *493*, 148.Google Scholar

[65]

C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, H. C. Shih, Effect of the aluminium content of Al_{x}CrFe_{1.5}MnNi_{0.5} high-entropy alloys on. the corrosion behavior in aqueous environments. *Corros. Sci.* **2008**, *50*, 2053.Google Scholar

[66]

S. T. Chen, W. Y. Tang, Y. F. Kuo, S. Y. Chen, C. H. Tsau, T. T. Shun, J. W. Yeh, Microstructure and properties of age-hardenable Al_{x}CrFe_{1.5}MnNi_{0.5} alloys. *Mater. Sci. Eng. A* **2010**, *527*, 5818.Google Scholar

[67]

H. Y. Chen, C. W. Tsai, C. C. Tung, J. W. Yeh, T. T. Shun, C. C. Yang, S. K. Chen, Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys. *Ann. Chim. Sci. Mat.* **2006**, *31*, 685.CrossrefGoogle Scholar

[68]

Y. F. Kao, S. K. Chen, J. H. Sheu, J. T. Lin, W. E. Lin, J. W. Yeh, S. J. Lin, T. H. Liou, C. W. Wang, Hydrogen storage properties of multi-principal-component CoFeMnTi_{x}V_{y}Zr_{z} alloys. *Int. J. Hydrogen Energy* **2010**, *35*, 9046.CrossrefGoogle Scholar

[69]

L. Liu, J. B. Zhu, C. Zhang, J. C. Li, Q. Jiang, Microstructure and the properties of FeCoCuNiSn_{x} high entropy alloys. *Mater. Sci. Eng. A* **2012**, *548*, 64.Google Scholar

[70]

Y. X. Zhuang, W. J. Liu, P. F. Xing, F. Wang, J. C. He, Effect of Co element on microstructure and mechanical properties of FeCo_{x}NiCuAl alloys. *Acta Metall. Sin.* **2012**, *25*, 124.Google Scholar

[71]

Y. Y. Du, Y. P. Lu, T. J. Li, T. M. Wang, G. L. Zhang, Effect of aluminium content of Al_{x}CrFe_{1.5}Ni_{0.5} multiprincipal alloys on microstructure and alloy hardness. *Mater. Res. Innovations* **2011**, *15*, 107.Google Scholar

[72]

C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, C. T. Liu, Phase stability and tensile properties of Co-free Al_{0.5}CrCuFeNi_{2} high-entropy alloys. *J. Alloys Compd.* **2014**, *584*, 530.Google Scholar

[73]

S. Guo, C. Ng, J. Lu, C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. *J. Appl. Phys.* **2011**, *109*, 103505.CrossrefGoogle Scholar

[74]

J. H. Pi, Y. Pan, H. Zhang, L. Zhang, Microstructure and properties of AlCrFeCuNi_{x} (0.6 ≤ x ≤ 1.4) high-entropy alloys. *Mater. Sci. Eng. A* **2012**, *534*, 228.Google Scholar

[75]

C. Li, J. C. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. *J. Alloys Compd.* **2009***,* *475*, 752.Google Scholar

[76]

J. H. Pi, Y. Pan, L. Zhang, H. Zhang, Microstructure and property of AlTiCrFeNiCu high-entropy alloy. *J. Alloys Compd.* **2011**, *509*, 5641.Google Scholar

[77]

U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang, C. C.Yang, Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. *Mater. Sci. Eng. A* **2007**, *460*, 403.Google Scholar

[78]

Z. H. Hu, Y. Z. Zhan, G. H. Zhang, J. She, C. H. Li, Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys. *Mater. Des.* **2010**, *31*, 1599.CrossrefGoogle Scholar

[79]

O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Refractory high-entropy alloys. *Intermetallics* **2010**, *18*, 1758.CrossrefGoogle Scholar

[80]

O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracle, Mechanical properties of Nb_{25}Mo_{25}Ta_{25}W_{25} and V_{20}Nb_{20}Mo_{20}Ta_{20}W_{20} refractory high entropy alloys. *Intermetallics* **2011**, *19*, 698.CrossrefGoogle Scholar

[81]

O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. *J. Alloys Compd.* **2011**, *509*, 6043.Google Scholar

[82]

O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, C. F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. *J. Mater. Sci.* **2012**, *47*, 4062.CrossrefGoogle Scholar

[83]

Y. Zhang, X. Yang, P. K. Liaw, Alloy design and properties optimization of high-entropy alloys. *J. Miner. Met. Mater. Soc.* **2012**, *64*, 830.CrossrefGoogle Scholar

[84]

O. N.,Senkov, C. F. Woodward, Microstructure and properties of a refractory NbCrMo_{0.5}Ta_{0.5}TiZr alloy. *Mater. Sci. Eng. A* **2011**, *529*, 311.Google Scholar

[85]

O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, Oxidation behavior of a refractory NbCrMo_{0.5}Ta_{0.5}TiZr alloy. *J. Mater. Sci.* **2012**, *47*, 6522.Google Scholar

[86]

C. M. Liu, H. M. Wang, S. Q. Zhang, H. B.Tang, A. L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys. *J. Alloys Compd.* **2014**, *583*, 162.Google Scholar

[87]

S. G. Ma, S. F. Zhang, M. C. Gao, P. K. Liaw, Y. Zhang, A successful synthesis of the CoCrFeNiAl_{0.3} single-crystal, high-entropy alloy by bridgman solidification. *J. Miner. Met. Mater. Soc.* **2013**, *65*, 1751.Google Scholar

[88]

M. J. Yao, K. G. Pradeep, C. C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. *Scr. Mater.* **2014**, *72–73*, 5.Google Scholar

[89]

J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, Z. P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. *Acta Mater.***2014**, *62*, 105.CrossrefGoogle Scholar

[90]

M. Feuerbacher, M. Heidelmann, C. Thomas, Plasticity of Zr-Nb-Ti-Ta-Hf high-entropy alloys. http://arxiv.org/ftp/arxiv/papers/1401/1401.3997.pdf. **2014**.

[91]

T. B. Massalski, P. R. Subramanian, H. Okamoto, L. Kacprzak, *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, 2, and 3, ASM International, Materials Park, OH, **1990**.Google Scholar

[92]

Z. Tang, M. C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K. A. Dahmen, P. K. Liaw, T. Egami, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. *J. Miner. Met. Mater. Soc.* **2013**, *65*, 1848.CrossrefGoogle Scholar

[93]

H. Bei, Multi-component solid solution alloys having high mixing entropy, Patent US2013/0108502A1.Google Scholar

[94]

M. F. del Grosso, G. Bozzolo, H. O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements. *J. Alloys Compd.* **2012**, *534*, 25.Google Scholar

[95]

C. H. Zhang, M. H. Lin, B. Wu, G. X. Ye, L. K. Zhang, T. Chen, W. J. Zhang, Z. H. Zheng, Q. Li, Y. Q. Shao, B. Y. Zhou, C. Wang, Explore the possibility of forming fcc high entropy alloys in equal-atomic systems CoFeMnNi M and CoFeMnNiSm M. *J. Shanghai Jiaotong Univ. (Sci.)* **2011**, *16*, 173.Google Scholar

[96]

L. S. Darken, R. W. Gurry, *Physical Chemistry of Metals*, McGraw-Hill, New York, **1953**.Google Scholar

[97]

K. A. Gschneidner, M. Verkade, Electronic and crystal structures, size (ECS2) model for predicting binary solid solutions. *Prog. Mater. Sci.* **2004**, *49*, 411.CrossrefGoogle Scholar

[98]

F. R. Boer, D. G. Perrifor, *Cohesion in Metals*, Elsevier Science Publishers B.V., Netherlands, pp.1–758, **1988**.Google Scholar

[99]

W. L. Bragg, The crystalline structure of copper. *Philos. Mag.* **1914**, *28*, 355.CrossrefGoogle Scholar

[100]

H. Hartmann, F. Ebert, O. Bretschneider, electrolysis in phosphate fussions I electrolytical extraction of alpha and beta-Wolframe. *Z. Anorg. Allg. Chem.* **1931**, *198*, 116.Google Scholar

[101]

W. P. Davey, F. G. Wick, Crystal structures of CsCl and TlCl. *Phys. Rev.* **1921**, *17*, 403.Google Scholar

[102]

J. K. Burdett, S. Lee, T. J. McLarnan, The coloring problem. *J. Am. Chem. Soc.* **1985**, *107*, 3083.CrossrefGoogle Scholar

[103]

M. Widom, W. P. Huhn, S. Maiti, W. Steurer, Hybrid monte carlo/molecular dynamics simulation of a refractory metal high entropy alloy*. Metall Mat. Trans. A* **2014**, *45*, 196.CrossrefGoogle Scholar

[104]

M. F. del Grosso, G. Bozzolo, H. O. Mosca, Modeling of high entropy alloys of refractory elements. *Phys. B* 2**012**, *407*, 3285.Google Scholar

[105]

F. Y. Tian, L. K. Varga, N. X. Chen, L. Delczeg, L. Vitos, Ab initio investigation of high-entropy alloys of 3d elements. *Phys. Rev. B* **2013**, *87*, 075144.CrossrefGoogle Scholar

[106]

J. W. Yeh, Y. L. Chen, S. J. Lin, S. K. Chen, High-entropy alloys – a new era of exploitation. *Mater. Sci. Forum* **2007**, *560*, 1.Google Scholar

[107]

D.A. Wigley, *Mechanical Properties of Materials at Low Temperatures*, Plenum Press, New York, **1971**.Google Scholar

[108]

K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. *Acta Mater.* **2013**, *61*, 4887.CrossrefGoogle Scholar

[109]

A. J. Zaddach, C. Niu, C. C. Koch, D. L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. *JOM* **2013**, *65*, 1780.CrossrefGoogle Scholar

[110]

W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, Z. P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. *Scr. Mater.* **2013**, *68*, 526.Google Scholar

[111]

A. Gali, E. P. George, Tensile properties of high- and medium-entropy alloys. *Intermetallics* **2013**, *39*, 74.Google Scholar

[112]

Z. S. Basinski, R. A. Foxall, R. Pascual, stress equivalence of solution hardening. *Scripta Metallurgica* **1972**, *6*, 807.CrossrefGoogle Scholar

[113]

H. Traub, H. Neuhauser, S. Ch, Investigations of the yield region of concentrated Cu-Ge and Cu-Zn single crystals-I. Critical resolved shear stress, slip line formation and the true strain rate. *Acta Metall.* **1977**, *25*, 437.CrossrefGoogle Scholar

[114]

T. Wille, C. Schwink, Precision measurements of critical resolved shear sress in CuMn alloys. *Acta Metall.* **1986**, *34*, 1059.CrossrefGoogle Scholar

[115]

Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. *Acta Mater.* **2014**, *65*, 85.CrossrefGoogle Scholar

[116]

O. Soriano-Vargas, E. O. Avila-Davila, V. M. Lopez-Hirata, H. J. Dorantes-Rosales, J. L. Gonzalez-Velazquez, Spinodal decomposition in an Fe-32 at%Cr alloy during isothermal aging. *Mater. Trans.* **2009**, *50*, 1753.CrossrefGoogle Scholar

[117]

A. L. Greer, Confusion by design. *Nature* **1993**, *366*, 303.Google Scholar

## Comments (0)