Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 230, Issue 2


Influence of pressure on molecular packing and photochemical properties in three chalcone analogs

Julia Bąkowicz
  • Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Galica
  • Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilona Turowska-Tyrk
  • Corresponding author
  • Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-03 | DOI: https://doi.org/10.1515/zkri-2014-1792


The structures of 1-(4-methylphenyl)-3-(2-thienyl)prop-2-en-1-one, (I), 1-(5-bromo-2-hydroxyphenyl)-3-(2-furyl)prop-2-en-1-one, (II), and 1-(3-furyl)-3-[3-(trifluoromethyl)phenyl]prop-2-en-1-one, (III), were determined in ambient and high pressure conditions. The values of the intermolecular geometrical parameters describing possibilities of execution of [2+2] photodimerization were calculated and analysed. In the case of ambient pressure, for (I) they are close to the border valid for photoreactive compounds and for (II) and (III) they exclude the photochemical reaction in crystals. High pressure hardly changed the mutual orientation of adjacent molecules and largely the distance between them: in the case of (I), the distance was far below limits for compounds undergoing [2+2] photodimerization. The volume of free space was calculated for the studied compounds for different values of pressure and analysed in the context of possibilities of the [2+2] photodimerization.

This article offers supplementary material which is provided at the end of the article.

Keywords: ambient-pressure structures; high-pressure structures; [2+2] photodimerization; X-ray structure analysis


  • [1]

    K. Tanaka, F. Toda, Stereoselective photocycloadditions of chalcone derivatives in a crystalline inclusion complex with 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol. J. Chem. Soc. Chem. Commun. 1983, 7, 593.Google Scholar

  • [2]

    D. Cesarin-Sobrinho, J. C. Netto-Ferreira, Photochemistry of fluorinated chalcones in the solid state. Quim. Nova 2002, 25, 62.Google Scholar

  • [3]

    I. Turowska-Tyrk, K. Grześniak, E. Trzop, T. Zych, Monitoring structural transformations in crystals. Part 4. Monitoring structural changes in crystals of pyridine analogs of chalcone during [2+2]-photodimerization and possibilities of the reaction in hydroxyl derivatives. J. Solid State Chem. 2003, 174, 459.Google Scholar

  • [4]

    R. Nagwanshi, M. Bakhru, S. Jain, Photodimerization of heteroaryl chalcones: comparative antimicrobial activities of chalcones and their photoproducts. Med. Chem. Res. 2012, 21, 1587.Web of ScienceCrossrefGoogle Scholar

  • [5]

    G. M. J. Schmidt, Topochemistry Part III. The crystal chemistry of some trans-cinnamic acids. J. Chem. Soc. 1964, 2014.Google Scholar

  • [6]

    G. M. J. Schmidt, Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647.Google Scholar

  • [7]

    K. Saigo, M. Hasegawa, Determining factors of molecular arrangement and reaction course in the crystalline-state photoreaction of unsymmetrically substituted diolefins. In: Reactivity in Molecular Crystals, (Ed. Y. Ohashi), VCH, Tokyo, p. 203, 1993.Google Scholar

  • [8]

    M. D. Cohen, G. M. J. Schmidt, Topochemistry part I. A survey. J. Chem. Soc. 1964, 1966.Google Scholar

  • [9]

    M. D. Cohen, G. M. J. Schmidt, F. I. Sonntag, Topochemistry Part II. The photochemistry of trans-cinnamic acids. J. Chem. Soc. 1964, 2000.Google Scholar

  • [10]

    J. Bregman, K. Osaki, G. M. J. Schmidt, F. I. Sonntag, Topochemistry Part IV. The crystal chemistry of some cis-cinnamic acids. J. Chem. Soc. 1964, 2021.Google Scholar

  • [11]

    D. Rabinovich, G. M. J. Schmidt, Topochemistry Part V. The crystal chemistry of 2,5-dimethyl-1,4-benzoquinone. J. Chem. Soc. 1964, 2030.Google Scholar

  • [12]

    J. O. Williams, J. M. Thomas, Lattice imperfections in organic solids. Part 1. – anthracene. Trans. Faraday Soc. 1967, 63, 1720.CrossrefGoogle Scholar

  • [13]

    M. D. Cohen, Z. Ludmer, J. M. Thomas, J. O. Williams, Dislocations and the photodimerization of 9-cyanoanthracene. J. Chem. Soc. D, Chem. Commun. 1969, 1172.Google Scholar

  • [14]

    J. O. Williams, D. Donati, J. M. Thomas, Spectral evidence for the existence of green “incipient” dimers in single crystals of anthracene. J. Chem. Soc. Faraday Trans. 2 1977, 73, 1169.Google Scholar

  • [15]

    S. Ramdas, J. M. Thomas, M. J. Goringe, Computational approach to the study of extended defects in molecular crystals. Part 2.-structural changes at planar faults-their importance in facilitating photodimerization and in governing stacking fault energies. J. Chem. Soc. Faraday Trans. 2 1977, 73, 551.Google Scholar

  • [16]

    S. Ramdas, W. Jones, J. M. Thomas, J.-P. Desvergne, The role of orientational defects in the photodimerization of 1,5-dichloroanthracene. Chem. Phys. Lett. 1978, 57, 468.CrossrefGoogle Scholar

  • [17]

    K. Gnanaguru, N. Ramasubbu, K. Venkatesan, V. Ramamurthy, Topochemical solid state photodimerization of non-ideally oriented monomers: 7-Chlorocoumarin and 7-methoxycoumarin. J. Photochem. 1984, 27, 355.CrossrefGoogle Scholar

  • [18]

    K. Gnanaguru, N. Ramasubbu, K. Venkatesan, V. Ramamurthy, A Study on the photochemical dimerization of coumarins in the solid state. J. Org. Chem. 1985, 50, 2337.CrossrefGoogle Scholar

  • [19]

    K. D. M. Harris, J. M. Thomas, D. Williams, Mathematical analysis of intra-stack dimerizations in reactive crystalline solids. J. Chem. Soc. Faraday Trans. 1991, 87, 325.CrossrefGoogle Scholar

  • [20]

    M. D. Cohen, The photochemistry of organic solids. Angew. Chem., Int. Ed. Engl. 1975, 14, 386.CrossrefGoogle Scholar

  • [21]

    E. V. Boldyreva, The concept of the ‘reaction cavity’: A link between solution and solid-state chemistry. Solid State Ionics 1997, 101-103, 843.Google Scholar

  • [22]

    J. M. McBride, The role of local stress in solid-state radical reactions. Acc. Chem. Res. 1983, 16, 304.CrossrefGoogle Scholar

  • [23]

    J. M. McBride, B. E. Segmuller, M. D. Hollingsworth, D. E. Mills, B. A. Weber, Mechanical stress and reactivity in organic solids. Science 1986, 234, 830.Google Scholar

  • [24]

    A. P. Chupakhin, A. A. Sidel’nikov, V. V. Boldyrev, Control of the reactivity of solids by changing their mechanical properties. React. Solids 1987, 3, 1.CrossrefGoogle Scholar

  • [25]

    T. Luty, R. Fouret, On stability of molecular solids “under chemical pressure”. J. Chem. Phys. 1989, 90, 5696.Google Scholar

  • [26]

    T. Luty, C. J. Eckhardt, General theoretical concepts for solid state reactions: quantitative formulation of the reaction cavity, steric compression, and reaction-induced stress using an elastic multipole representation of chemical pressure. J. Am. Chem. Soc. 1995, 117, 2441.CrossrefGoogle Scholar

  • [27]

    E. V. Boldyreva, S. L. Kuzmina, H. Ahsbahs, Kinetics of solid state nitrito-nitro bond isomerization in [Co(NH3)5ONO]Br2 at high pressures. J. Struct. Chem. 1998, 39, 762.CrossrefGoogle Scholar

  • [28]

    E. V. Boldyreva, Crystal-structure aspects of solid-state inner-sphere isomerization in nitro(nitrito)pentaamminecobalt(III) complexes. Russ. J. Coord. Chem. 2001, 27, 297.CrossrefGoogle Scholar

  • [29]

    V. M. Tapilin, N. N. Bulgakov, A. P. Chupakhin, A. A. Politov, A. G. Druganov, On mechanochemical dimerization of anthracene. Different possible reaction pathways. J. Struct. Chem. 2010, 51, 635.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    E. V. Boldyreva, A. A. Sidel’nikov, Effect of mechanical stresses on the photoisomerization in the crystals of Co(III) nitropentaamines. Proc. Sib. Dept. Acad. Sci. USSR 1987, 5, 139.Google Scholar

  • [31]

    B. I. Yakobson, E. V. Boldyreva, A. A. Sidel’nikov, A quantitative description of the bending deformation of single crystals induced by a photochemical reaction. Proc. Sib. Dept. Acad. Sci. USSR 1989, 51, 6.Google Scholar

  • [32]

    R. Boehler, New diamond cell for single-crystal X-ray diffraction. Rev. Sci. Instrum. 2006, 77, 115103 (pp.3).CrossrefGoogle Scholar

  • [33]

    L. Merrill, W. A. Bassett, Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies. Rev. Sci. Instrum. 1974, 45, 290.CrossrefGoogle Scholar

  • [34]

    R. J. Angel, D. R. Allan, R. Miletich, W. Finger, The use of quartz as an internal pressure standard in high-pressure crystallography. J. Appl. Cryst. 1997, 30, 461.CrossrefGoogle Scholar

  • [35]

    Agilent Technologies: CrysAlis PRO Software system, Version, Agilent Technologies, Wroclaw, Poland, 2011.Google Scholar

  • [36]

    G. M. Sheldrick, A short history of SHELX. Acta Cryst. 2008, A64, 112.CrossrefGoogle Scholar

  • [37]

    V. Enkelmann, G. Wegner, K. Novak, K. B. Wagener, Single-crystal-to-single-crystal photodimerization of cinnamic acid. J. Am. Chem. Soc. 1993, 115, 10390.CrossrefGoogle Scholar

  • [38]

    K. Novak, V. Enkelmann, G. Wegner, K. B. Wagener, Crystallographic study of a single crystal to single crystal photodimerization and its thermal reverse reaction. Angew. Chem. Int. Ed. Engl. 1993, 32, 1614.CrossrefGoogle Scholar

  • [39]

    J. Swiatkiewicz, G. Eisenhardt, P. N. Prasad, J. M. Thomas, W. Jones, C. R. Theocharis, Phonon spectroscopy of photochemical reactions in organic solids: photodimerization of 2-benzyl-5-benzylidenecyclopentanone and photopolymerization of 2,5-distyrylpyrazine. J. Phys. Chem. 1982, 86, 1764.CrossrefGoogle Scholar

  • [40]

    J. Bąkowicz, I. Turowska-Tyrk, Photo-induced structural transformations in crystals at high pressure. Part 1. The crystallographic studies of the photochemical reaction at high pressure. J. Photochem. Photobiol. A 2012, 232, 41.Web of ScienceGoogle Scholar

  • [41]

    J. Bąkowicz, I. Turowska-Tyrk, Structural transformations in crystals induced by radiation and pressure. Part 1. How pressure influences the intramolecular photochemical reactions in crystals. CrystEngComm 2014, 16, 6039.CrossrefWeb of ScienceGoogle Scholar

  • [42]

    M. M. Rosli, P. S. Patil, H.-K. Fu, I. A. Razak, S. M. Dharmaprakash, 1-(4-Methylphenyl)-3-(2-thienyl)prop-2-en-1-one. Acta Cryst. 2006, E62, o4648.Google Scholar

  • [43]

    L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849.CrossrefGoogle Scholar

  • [44]

    F. H. Allen, The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst. 2002, B58, 380.CrossrefGoogle Scholar

  • [45]

    I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, New software for searching the Cambridge structural database and visualizing crystal structures. Acta Cryst. 2002, B58, 389.CrossrefGoogle Scholar

  • [46]

    Y. Ito, G. Kano, N. Nakamura, Diastereoselective photocyclization of N-(p-(2,4,6-triisopropylbenzoyl)benzoyl)-L-phenylalanine methyl ester in the solid state. J. Org. Chem. 1998, 63, 5643.Google Scholar

  • [47]

    A. Sekine, Y. Ohashi, β-α Photoisomerization of cobaloxime complexes in the solid state III. Accelated reaction rate by hydrogen bond. Bull. Chem. Soc. Jpn. 1991, 64, 2183.CrossrefGoogle Scholar

  • [48]

    C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Cryst. 2006, 39, 453.CrossrefGoogle Scholar

About the article

Corresponding author: Ilona Turowska-Tyrk, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, E-mail:

Received: 2014-07-28

Accepted: 2014-10-27

Published Online: 2014-12-03

Published in Print: 2015-02-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 2, Pages 131–137, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1792.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in