Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 230, Issue 5

Issues

Structures of dehydrated microporous copper silicate CuSH-6Na, an in situ single crystal X-ray study

Xiqu Wang
  • Corresponding author
  • Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allan J. Jacobson
  • Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-16 | DOI: https://doi.org/10.1515/zkri-2014-1786

Abstract

The dehydration behavior of the microporous copper silicate Na2(Cu2Si5O13)·3H2O conventionally denoted as CuSH-6Na was studied using single crystal X-ray data collected at temperatures –150, 25, 40, 50, 60, 70 and 120 °C. Reversible dehydration of CuSH-6Na starts at ambient temperatures under dry nitrogen flow and is complete at 70 °C. The water molecules initially present in both ordered and disordered sites were simultaneously driven out beginning at ambient temperature. The dehydration is accompanied by a negative thermal expansion of the crystal caused by a slight progressive narrowing of the channels along the direction perpendicular to the silicate layers. The fully dehydrated structure has framework copper metal sites with open coordination spheres directly exposed to the space inside the accessible channels.

Keywords: crystal structure; copper silicate; dehydration; microporous; zeolite-like

References

  • [1]

    A. K. Cheetham, G. Férey, T. Loiseau, Open-framework inorganic materials. Angew. Chem. Int. Ed. 1999, 38, 3268.Google Scholar

  • [2]

    J. Yu, R. Xu, Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials. Acc. Chem. Res. 2010, 43, 1195.PubMedGoogle Scholar

  • [3]

    J. Rocha, P. Brandão, Z. Lin, M. W. Anderson, V. Alfredsson, O. Terasaki, The first large-pore vanadosilicate framework containing hexacoordinated vanadium. Angew. Chem. Int. Ed. 1997, 36, 100.Google Scholar

  • [4]

    X. Wang, L. Liu, A. J. Jacobson, Open-framework and microporous vanadium silicates. J. Am. Chem. Soc. 2002, 124, 7812.Google Scholar

  • [5]

    R. J. Francis, A. J. Jacobson, The first organically templated open-framework niobium silicate and germanate phases: Low-temperature hydrothermal syntheses of [(C4N2H11)Nb3SiO10] (NSH-1) and [(C4N2H11)Nb3GeO10] (NGH-1). Angew. Chem. Int. Ed. 2001, 40, 2879.Google Scholar

  • [6]

    H.-K. Liu, W.-J. Chang, K.-H. Lii, High-temperature, high-pressure hydrothermal synthesis and characterization of an open-framework uranyl silicate with nine-ring channels: Cs2UO2Si10O22. Inorg. Chem. 2011, 50, 11773.PubMedGoogle Scholar

  • [7]

    J. Rocha, Z. Lin, Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Rev. Mineral. Geochem. 2005, 57, 173.Google Scholar

  • [8]

    S. Natarajan, S. Mandal, Open-framework structures of transition-metal compounds. Angew. Chem. Int. Ed. 2008, 47, 4798.Google Scholar

  • [9]

    S. M. Kuznicki, U.S. Patent No. 4,853,202. 1989.Google Scholar

  • [10]

    M. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. MacKay, A. Ferreira, J. Rocha, S. Lidin, Structure of the microporous titanosilicate ETS-10. Nature 1994, 367, 347.Google Scholar

  • [11]

    X. Wang, A. J. Jacobson, Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data. Chem. Commun. 1999, 1999, 973.Google Scholar

  • [12]

    S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720.Google Scholar

  • [13]

    X. Wang, L. Liu, L. Wang, A. J. Jacobson, Open-framework copper titanosilicates. Mater. Res. Soc. Symp. Proc. 2005, 848, 97.Google Scholar

  • [14]

    P. C. Burns, F. C. Hawthorne, Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. The Canadian Mineralogist 1996, 34, 1089.Google Scholar

  • [15]

    H. Effenberger, G. Giester, W. Krause, H. Bernhardt, Tschörtnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany. Am. Mineral. 1998, 83, 607.Google Scholar

  • [16]

    J. J. Pluth, J. V. Smith, Arizona porphyry copper/hydrothermal deposits ii: Crystal structure of ajoite, (K,Na)3Cu2Al3Si29O76(OH)16 ∼8H2O. Proc. Natl. Acad. Sci. 2002, 99, 11002.Google Scholar

  • [17]

    M. Rumsey, M. Welch, A. Kampf, J. Spratt, Diegogattaite, Na2CaCu2Si8O20·H2O: A new nanoporous copper sheet silicate from Wessels mine, Kalahari manganese fields, Republic of South Africa. Mineral Magaz 2013, 77, 3155.CrossrefGoogle Scholar

  • [18]

    M. D. Welch, M. S. Rumsey, A new naturally-occurring nanoporous copper sheet–silicate with 6482 cages related to synthetic “CuSH” phases. J. Solid State Chem. 2013, 203, 260.Web of ScienceGoogle Scholar

  • [19]

    X. Wang, L. Liu, A. J. Jacobson, Nanoporous copper silicates with one-dimensional 12-ring channel systems. Angew. Chem. Int. Ed. 2003, 42, 2044.Google Scholar

  • [20]

    X. Wang, L. Liu, L. Wang, A. J. Jacobson, Hydrothermal synthesis and structures of the open-framework copper silicates Na2[Cu2Si4O11](H2O)2 (CuSH-2Na), Na2[CuSi3O8] (CuSH-3Na), Cs2Na4 [Cu2Si12O27(OH)2](OH)2 (CuSH-4NaCs), and Na2[Cu2Si5O13](H2O)3 (CuSH-6Na). Solid State Sci 2005, 7, 1415.Google Scholar

  • [21]

    Y. Hubert, D. Jordan, J. L. Guth, A. Kalt, Crystallographic characteristics of two new synthetic copper sodium silicates. Comptes Rendus des Seances de l’Academie des Sciences, Serie D: Sciences Naturelles 1977, 284, 329.Google Scholar

  • [22]

    P. Brandão, F. A. A. Paz, J. Rocha, A novel microporous copper silicate: Na2Cu2Si4O11·2H2O. Chem. Commun. 2005, 2005, 171.CrossrefGoogle Scholar

  • [23]

    Q. Jiang, Q. Shi, H. Xu, J. Li, J. Dong, Hydrothermal synthesis of pure phase copper silicate Na2Cu2Si4O11·2H2O with ammonia as complexing agent. Eur. J. Inorg. Chem. 2011, 2011, 2112.Web of ScienceCrossrefGoogle Scholar

  • [24]

    G. Férey, Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191.PubMedWeb of ScienceGoogle Scholar

  • [25]

    Z. R. Herm, E. D. Bloch, J. R. Long, Hydrocarbon separations in metal–organic frameworks. Chem. Mater. 2013, 26, 323.Google Scholar

  • [26]

    J. Gascon, A. Corma, F. Kapteijn, F. X. Llabres i Xamena, Metal organic framework catalysis: Quo vadis? ACS Catalysis 2013, 4, 361.Web of ScienceGoogle Scholar

  • [27]

    M. Fischer, J. R. Gomes, M. Jorge, Computational approaches to study adsorption in MOFs with unsaturated metal sites. Molecular Simulation 2014, 40, 537.Web of ScienceGoogle Scholar

  • [28]

    Y. Huang, B. Zhang, J. Duan, W. Liu, X. Zheng, L. Wen, X. Ke, D. Li, Two copper (ii) metal-organic frameworks with nanoporous channels and vacant coordination sites. Crystal Growth & Design 2014, 14, 2866.Web of ScienceGoogle Scholar

  • [29]

    APEX-II: v.2012.10-0 Bruker AXS Madison (2012).Google Scholar

  • [30]

    C. Hubschle, G. M. Sheldrick, B. Dittrich, Shelxle: A qt graphical user interface for Shelxl. J. Appl. Crystallogr. 2011, 44, 1281.Web of ScienceGoogle Scholar

  • [31]

    L. Cunha-Silva, P. Brandao, J. Rocha, F. Almeida Paz, The dehydrated copper silicate Na2[Cu2Si4O11]: A three-dimensional microporous framework with a linear Si-O-Si linkage. Acta Crystallogr. Sect. E: Struct. Rep. Online 2008, 64, i13.Web of ScienceGoogle Scholar

  • [32]

    P. Comodi, P. Zanazzi, Structural thermal behavior of paragonite and its dehydroxylate: A high-temperature single-crystal study. Phys. Chem. Miner. 2000, 27, 377.Google Scholar

  • [33]

    I. D. Brown, The chemical bond in inorganic chemistry. Oxford Univ. Press, Oxford, UK, 2006.Google Scholar

About the article

Corresponding author: Xiqu Wang, Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, USA, E-mail:


Received: 2014-07-07

Accepted: 2014-09-20

Published Online: 2014-10-16

Published in Print: 2015-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 5, Pages 363–368, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1786.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in