Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 230, Issue 5 (May 2015)

Issues

The importance of T⋯T⋯T angles in the feasibility of zeolites

Xuehua Liu
  • Departamento de Sistemas Informaticos y Computacion. Universitat Politècnica de València. Avenida Los Naranjos s/n, 46022 Valencia (Spain)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Soledad Valero
  • Departamento de Sistemas Informaticos y Computacion. Universitat Politècnica de València. Avenida Los Naranjos s/n, 46022 Valencia (Spain)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Estefania Argente
  • Departamento de Sistemas Informaticos y Computacion. Universitat Politècnica de València. Avenida Los Naranjos s/n, 46022 Valencia (Spain)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vicente Botti
  • Departamento de Sistemas Informaticos y Computacion. Universitat Politècnica de València. Avenida Los Naranjos s/n, 46022 Valencia (Spain)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ German Sastre
  • Corresponding author
  • Instituto de Tecnologia Quimica U.P.V.-C.S.I.C. Universitat Politècnica de València, Avenida Los Naranjos s/n, 46022 Valencia (Spain)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-21 | DOI: https://doi.org/10.1515/zkri-2014-1801

Abstract

The database of prospective zeolites (www.hypotheticalzeolites.net) has been screened in search of feasible zeolites. Previous criteria of zeolite feasibility have been reviewed, based on descriptors such as energy, density, average and distribution of ring sizes, and more importantly that of Li et al. (LID criteria) presented recently [Angew. Chem. Int. Ed. 2013, 52, 1673], based on Si–O, OO, and SiSi distances of SLC-minimised structures. In spite of the still large number of feasible zeolites according to this and other criteria, a number of researchers wonder why there are so many feasible and so few synthesised zeolites. Without answering this difficult question, a new criteria is proposed in this study based on the fact that TTT angles (T is tetrahedral atom) show specific ranges of values depending on the ring size to which they belong. Based on improved definitions to count and enumerate rings in zeolites, and with data from the IZA database, we introduce the TTT criteria, which we propose to use after the LID criteria, to further narrow the space of feasible zeolites.

This article offers supplementary material which is provided at the end of the article.

Keywords: hypothetical zeolites; topology; zeolite feasibility

References

  • [1]

    W. H. Baur, One hundred years of inorganic crystal chemistry—a personal view. Cryst. Rev. 2014, 20, 64.CrossrefGoogle Scholar

  • [2]

    Y. Li, J. Yu, New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 2014, 114, 7268.CrossrefWeb of SciencePubMedGoogle Scholar

  • [3]

    G. Ferey, C. Mellot-Draznieks, T. Loiseau, Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sci. 2003, 5, 79.Google Scholar

  • [4]

    J. Klinowski, Hypothetical molecular sieve frameworks. Curr. Opinion Solid State Mater. Sci. 1998, 3, 79.Google Scholar

  • [5]

    D. J. Earl, M. W. Deem, Toward a database of hypothetical zeolite structures. Ind. Eng. Chem. Res. 2006, 45, 5449.CrossrefGoogle Scholar

  • [6]

    M. D. Foster, M. M. J. Treacy, Database of hypothetical zeolite structures: http://www.hypotheticalzeolites.net/NEWDATABASE/SILVER_UNIQ/query.php.

  • [7]

    J. V. Smith, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. I. Perpendicular linkage from simple hexagonal net. Am. Miner. 1977, 62, 703.Google Scholar

  • [8]

    M. Sato, Framework topology of tectosilicates and its characterization in terms of coordination degree sequence. J. Phys. Chem. 1987, 91, 4675.CrossrefGoogle Scholar

  • [9]

    M. O’Keeffe, N. E. Brese, Uninodal 4-connected 3D nets. I. Nets without 3- or 4-rings. Acta Cryst. A 1992, 48, 663.Google Scholar

  • [10]

    M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Zeit. Krist. 1997, 212, 768.CrossrefGoogle Scholar

  • [11]

    M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, M. D. Foster, Enumeration of periodic tetrahedral frameworks. Polynodal graphs. Micropor. Mesopor. Mater. 2004, 74, 121.CrossrefGoogle Scholar

  • [12]

    O. Delgado-Friedrichs, D. H. Huson, Tiling space by platonic solids. Discrete Comput. Geom. 1999, 21, 299.Google Scholar

  • [13]

    E. Verheyen, L. Joos, K. Van Havenbergh, E. Breynaert, N. Kasian, E. Gobechiya, K. Houthoofd, C. Martineau, M. Hinterstein, F. Taulelle, V. Van Speybroeck, M. Waroquier, S. Bals, G. Van Tendeloo, C. E. A. Kirschhock, J. A. Martens, Design of zeolite by inverse sigma transformation. Nat. Mater. 2012, 11, 1059.PubMedWeb of ScienceGoogle Scholar

  • [14]

    W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour, S. E. Ashbrook, P. Chlubna, L. Grajciar, M. Polozij, A. Zukal, O. Shvets, J. Cejka, A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013, 5, 628.Web of ScienceCrossrefGoogle Scholar

  • [15]

    A. Navrotsky, O. Trofymluk, A. A. Levchenko, Thermochemistry of microporous and mesoporous materials. Chem. Rev. 2009, 109, 3885.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [16]

    V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater. 2013, 25, 412.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    C. J. Dawson, V. Kapko, M. F. Thorpe, M. D. Foster, M. M. J. Treacy, Flexibility as an indicator of feasibility of zeolite frameworks. J. Phys. Chem. C 2012, 116, 16175.Web of ScienceGoogle Scholar

  • [18]

    D. Majda, F. A. Almeida Paz, O. Delgado Friedrichs, M. D. Foster, A. Simperler, R. G. Bell, J. Klinowski, Hypothetical zeolitic frameworks: in search of potential heterogeneous catalysts. J. Phys. Chem. C 2008, 112, 1040.Web of ScienceGoogle Scholar

  • [19]

    Y. Li, J. Yu, R. Xu, Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed. 2013, 52, 1673.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    M. J. Sanders, M. Leslie, C. R. A. Catlow, Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1984, 19, 1271.Google Scholar

  • [21]

    M. O’Keeffe, B. G. Hyde, On SiOSi configurations in silicates. Acta Cryst. B 1978, 34, 27.Google Scholar

  • [22]

    M. O’Keeffe, B. G. Hyde, The role of nonbonded forces in crystals. Structure and Bonding in Crystals, Academic Press, New York, Vol. 1, Chapter 10, pp. 227–254, 1981.Google Scholar

  • [23]

    M. W. Deem, J. M. Newsam, Determination of 4-connected framework crystal structures by simulated annealing. Nature 1989, 342, 260.Google Scholar

  • [24]

    G. O. Brunner, Criteria for the evaluation of hypothetical zeolite frameworks. Zeolites 1990, 10, 612.CrossrefGoogle Scholar

  • [25]

    G. Sastre, J. D. Gale, ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Micropor. Mesopor. Mater. 2001, 43, 27.CrossrefGoogle Scholar

  • [26]

    G. Sastre, A. Corma, Topological descriptor for oxygens in zeolites analysis of ring counting in tetracoordinated nets. J. Phys. Chem. C 2009, 113, 6398.Web of ScienceGoogle Scholar

  • [27]

    M. O’Keeffe, S. T. Hyde, Vertex symbols for zeolite nets. Zeolites 1997, 19, 370.CrossrefGoogle Scholar

  • [28]

    (a) Ch. Baerlocher, L. B. McCusker, D. H. Olson, Atlas of Zeolite Framework Types, 6th Revised Edition, Amsterdam: Elsevier 2007. (b) The current version of the Atlas in the web [http://www.iza-structure.org] at the time of writing contains 218 structures, of which 9 interrupted structures will not be considered in this study. A list of the 209 frameworks included in this study is given as supplementary material.

  • [29]

    L. Stixrude, M. S. T. Bukowinski, Rings, topology, and the density of tectosilicates. Am. Miner. 1990, 75, 1159.Google Scholar

  • [30]

    L. B. McCusker, R. W. Grosse-Kunstleve, Ch. Baerlocher, M. Yoshikawa, M. E. Davis, Synthesis optimization and structure analysis of the zinco-silicate molecular sieve VPI-9. Micropor. Mesopor. Mater. 1996, 6, 295.Google Scholar

  • [31]

    Y. G. Bushuev, G. Sastre, Feasibility of pure silica zeolites. J. Phys. Chem. C 2010, 114, 19157.Google Scholar

  • [32]

    Are all of these structures really prospective zeolite structures? http://www.hypotheticalzeolites.net/wordpress/.

  • [33]

    G. Sastre, A. Corma, Predicting structural feasibility of silica and germania zeolites. J. Phys. Chem. C 2010, 114, 1667.Web of ScienceGoogle Scholar

  • [34]

    A. Rojas, M. A. Camblor, A pure silica chiral polymorph with helical pores. Angew. Chem. Int. Ed. 2012, 51, 3854.Web of ScienceCrossrefGoogle Scholar

  • [35]

    J. E. Schmidt, M. W. Deem, M. E. Davis, Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents. Angew. Chem. Int. Ed. 2014, 53, 8372.Web of ScienceCrossrefGoogle Scholar

  • [36]

    D. E. Akporiaye, G. D. Price, Relative stability of zeolite frameworks from calculated energetics of known and theoretical structures. Zeolites 1989, 9, 321.CrossrefGoogle Scholar

  • [37]

    N. J. Henson, A. K. Cheetham, J. D. Gale, Theoretical calculations on silica frameworks and their correlation with experiment. Chem. Mater. 1994, 6, 1647.CrossrefGoogle Scholar

  • [38]

    M. A. Zwijnenburg, A. Simperler, S. A. Wells, R. G. Bell, Tetrahedral distortion and energetic packing penalty in zeolite frameworks: linked phenomena? J. Phys. Chem. B 2005, 109, 14783.CrossrefGoogle Scholar

  • [39]

    G. O. Brunner, W. M. Meier, Framework density distribution of zeolite-type tetrahedral nets. Nature 1989, 337, 146.Google Scholar

  • [40]

    G. O. Brunner, Which frameworks will form SiO2 analogs? The significance of loop configurations. Zeolites 1993, 13, 592.Google Scholar

  • [41]

    P. Wagner, Y. Nakagawa, G. S. Lee, M. E. Davis, S. Elomari, R. C. Medrud, S. I. Zones, Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39. J. Am. Chem. Soc. 2000, 122, 263.Google Scholar

  • [42]

    M. A. Zwijnenburg, S. T. Bromley, M. D. Foster, R. G. Bell, O. Delgado-Friedrichs, J. C. Jansen, T. Maschmeyer, Toward understanding the thermodynamic viability of zeolites and related frameworks through a simple topological model. Chem. Mater. 2004, 16, 3809.CrossrefGoogle Scholar

  • [43]

    Y. G. Bushuev, G. Sastre, Atomistic simulations of water and organic templates occluded during the synthesis of zeolites. Micropor. Mesopor. Mater. 2009, 129, 42.Web of ScienceGoogle Scholar

  • [44]

    G. D. Gatta, Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Micropor. Mesopor. Mater. 2010, 128, 78.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: German Sastre, Instituto de Tecnologia Quimica U.P.V.-C.S.I.C. Universitat Politècnica de València, Avenida Los Naranjos s/n, 46022 Valencia (Spain), E-mail:


Received: 2014-09-05

Accepted: 2014-12-04

Published Online: 2015-01-21

Published in Print: 2015-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1801.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jun-Ran Lu, Chao Shi, Yi Li, and Ji-Hong Yu
Chinese Chemical Letters, 2017, Volume 28, Number 7, Page 1365
[2]
Junran Lu, Lin Li, Hongxiao Cao, Yi Li, and Jihong Yu
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 2, Page 1276
[3]
Nils E. R. Zimmermann and Maciej Haranczyk
Crystal Growth & Design, 2016, Volume 16, Number 6, Page 3043

Comments (0)

Please log in or register to comment.
Log in