Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 230, Issue 5


A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34

Michael Fischer
  • Corresponding author
  • Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße 2, 28359 Bremen, Germany
  • Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert G. Bell
Published Online: 2014-12-12 | DOI: https://doi.org/10.1515/zkri-2014-1802


Density-functional theory calculations including a semi-empirical dispersion correction (DFT-D) are employed to study the interaction of small guest molecules (CH4, CO, N2) with the cation sites in the silicoaluminophosphate SAPO-34. Eight different cations from three different groups (alkali cations, alkaline earth cations, transition metals) are included in the study. For each case, the total interaction energy as well as the non-dispersive contribution to the interaction are analysed. Electron density difference plots are used to investigate the nature of this non-dispersive contribution in more detail. Despite a non-negligible contribution of polarisation interactions, the total interaction remains moderate in systems containing main group cations. In SAPOs exchanged with transition metals, orbital interactions between the cations and CO and N2 lead to a very strong interaction, which makes these systems attractive as adsorbents for the selective adsorption of these species. A critical comparison with experimental heats of adsorption shows reasonable quantitative agreement for CO and N2, but a pronounced overestimation of the interaction strength for methane. While this does not affect the conclusions regarding the suitability of TM-exchanged SAPO-34 materials for gas separations, more elaborate computational approaches may be needed to improve the quantitative accuracy for this guest molecule.

Keywords: adsorption; density-functional theory calculations; silicoaluminophosphates; zeolites


  • [1]

    S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag, Weinheim, Germany, 2010.Google Scholar

  • [2]

    S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, I. F. J. Vankelecom, Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39, 750.CrossrefGoogle Scholar

  • [3]

    S. Cavenati, C. A. Grande, A. E. Rodrigues, Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy & Fuels 2006, 20, 2648.CrossrefGoogle Scholar

  • [4]

    M. Palomino, A. Corma, F. Rey, S. Valencia, New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs. Langmuir 2010, 26, 1910.CrossrefGoogle Scholar

  • [5]

    M. Palomino, A. Corma, J. L. Jordá, F. Rey, S. Valencia, Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 2010, 48, 215.Google Scholar

  • [6]

    J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791.Google Scholar

  • [7]

    Z. R. Herm, R. Krishna, J. R. Long, CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Microporous Mesoporous Mater. 2012, 151, 481.Google Scholar

  • [8]

    L. Hamon, N. Heymans, P. L. Llewellyn, V. Guillerm, A. Ghoufi, S. Vaesen, G. Maurin, C. Serre, G. De Weireld, G. D. Pirngruber, Separation of CO2-CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Trans. 2012, 41, 4052.Google Scholar

  • [9]

    P. Li, F. H. Tezel, Adsorption separation of N2, O2, CO2 and CH4 gases by β -zeolite. Microporous Mesoporous Mater. 2007, 98, 94.Google Scholar

  • [10]

    B. Liu, B. Smit, Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. Langmuir 2009, 25, 5918.CrossrefGoogle Scholar

  • [11]

    J. Möllmer, M. Lange, A. Möller, C. Patzschke, K. Stein, D. Lässig, J. Lincke, R. Gläser, H. Krautscheid, R. Staudt, Pure and mixed gas adsorption of CH4 and N2 on the metal–organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF. J. Mater. Chem. 2012, 22, 10274.Google Scholar

  • [12]

    R. T. Yang, Adsorbents: Fundamentals and Applications. John Wiley & Sons, Inc, Hoboken, New Jersey, USA, 2003.Google Scholar

  • [13]

    A. Jayaraman, A. J. Hernández-Maldonado, R. T. Yang, D. Chinn, C. L. Munson, D. H. Mohr, Clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci. 2004, 59, 2407.CrossrefGoogle Scholar

  • [14]

    R. S. Pillai, S. A. Peter, R. V Jasra, Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous Mesoporous Mater. 2008, 113, 268.Google Scholar

  • [15]

    S. Sircar, T. Golden, Purification of hydrogen by pressure swing adsorption. Separ. Sci. Technol.2000, 35, 667.CrossrefGoogle Scholar

  • [16]

    Y.-Y. Huang, Infrared study of copper(I) carbonyls in Y zeolite, J. Am. Chem. Soc. 1973, 95, 6636.CrossrefGoogle Scholar

  • [17]

    Y.-Y. Huang, Selective adsorption of carbon monoxide and complex formation of cuprous-ammines in Cu(I)Y zeolites. J. Catal. 1973, 30, 187.CrossrefGoogle Scholar

  • [18]

    Y.-Y. Huang, Adsorption in AgX and AgY zeolites by carbon monoxide and other simple molecules. J. Catal. 1974, 32, 482.CrossrefGoogle Scholar

  • [19]

    J. Padin, R. T. Yang, Tailoring new adsorbents based on π -complexation: cation and substrate effects on selective acetylene adsorption. Ind. Eng. Chem. Res. 1997, 36, 4224.CrossrefGoogle Scholar

  • [20]

    J. Padin, S. U. Rege, R. T. Yang, L. S. Cheng, Molecular sieve sorbents for kinetic separation of propane/propylene. Chem. Eng. Sci. 2000, 55, 4525.CrossrefGoogle Scholar

  • [21]

    A. van Miltenburg, J. Gascon, W. Zhu, F. Kapteijn, J. A. Moulijn, Propylene/propane mixture adsorption on faujasite sorbents. Adsorption 2008, 14, 309.CrossrefGoogle Scholar

  • [22]

    S. Aguado, G. Bergeret, C. Daniel, D. Farrusseng, Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 2012, 134, 14635.Google Scholar

  • [23]

    R. T. Yang, A. J. Hernández-Maldonado, F. H. Yang, Desulfurization of transportation fuels with zeolites under ambient conditions. Science 2003, 301, 79.Google Scholar

  • [24]

    A. Takahashi, F. H. Yang, R. T. Yang, Aromatics/aliphatics separation by adsorption: new sorbents for selective aromatics adsorption by π -complexation. Ind. Eng. Chem. Res. 2000, 39, 3856.CrossrefGoogle Scholar

  • [25]

    E. Broclawik, J. Datka, B. Gil, W. Piskorz, P. Kozyra, The interaction of CO, N2 and NO with Cu cations in ZSM-5: quantum chemical description and IR study. Top. Catal. 2000, 11/12, 335.Google Scholar

  • [26]

    F. Giordanino, P. N. R. Vennestrøm, L. F. Lundegaard, F. N. Stappen, S. Mossin, P. Beato, S. Bordiga, C. Lamberti, Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans. 2013, 42, 12741.Google Scholar

  • [27]

    C. Yu, M. G. Cowan, R. D. Noble, W. Zhang, A silver(I) coordinated phenanthroline-based polymer with high ethylene/ethane adsorption selectivity. Chem. Commun. 2014, 50, 5745.CrossrefGoogle Scholar

  • [28]

    K. C. Kim, C. Y. Lee, D. Fairen-Jimenez, S. T. Nguyen, J. T. Hupp, R. Q. Snurr, Computational study of propylene and propane binding in metal–organic frameworks containing highly exposed Cu+ or Ag+ cations. J. Phys. Chem. C 2014, 118, 9086.CrossrefGoogle Scholar

  • [29]

    B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P. K. Thallapally, J. Liu, M. Chrzanowski, S. Ma, Introduction of π -complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 2014, 136, 8654.Google Scholar

  • [30]

    N. Chen, R. T. Yang, Ab initio molecular orbital study of adsorption of oxygen, nitrogen, and ethylene on silver–zeolite and silver halides. Ind. Eng. Chem. Res. 1996, 35, 4020.CrossrefGoogle Scholar

  • [31]

    A. M. Ferrari, K. M. Neyman, S. Huber, H. Knözinger, N. Rösch, Density functional study of methane interaction with alkali and alkaline-earth metal cations in zeolites. Langmuir 1998, 14, 5559.CrossrefGoogle Scholar

  • [32]

    G. Moretti, G. Ferraris, G. Fierro, M. Jacono, S. Morpurgo, M. Faticanti, Dimeric Cu(I) species in Cu-ZSM-5 catalysts: the active sites for the NO decomposition. J. Catal. 2005, 232, 476.Google Scholar

  • [33]

    S. Morpurgo, G. Moretti, M. Bossa, A computational study on N2 adsorption in Cu-ZSM-5. Phys. Chem. Chem. Phys. 2007, 9, 417.CrossrefGoogle Scholar

  • [34]

    F. Göltl, J. Hafner, Alkane adsorption in Na-exchanged chabazite: The influence of dispersion forces. J. Chem. Phys. 2011, 134, 064102.Google Scholar

  • [35]

    F. Göltl, J. Hafner, Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates. J. Chem. Phys. 2012, 136, 064503.Google Scholar

  • [36]

    F. Göltl, R. E. Bulo, J. Hafner, P. Sautet, What makes copper-exchanged SSZ-13 zeolite efficient at cleaning car exhaust gases? J. Phys. Chem. Lett. 2013, 4, 2244.Google Scholar

  • [37]

    C. Otero Areán, D. Nachtigallová, P. Nachtigall, E. Garrone, M. Rodríguez Delgado, Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites–the interplay of infrared spectroscopy and theoretical calculations. Phys. Chem. Chem. Phys. 2007, 9, 1421.CrossrefGoogle Scholar

  • [38]

    P. Nachtigall, M. Rodríguez Delgado, D. Nachtigallova, C. Otero Areán, The nature of cationic adsorption sites in alkaline zeolites-single, dual and multiple cation sites. Phys. Chem. Chem. Phys. 2012, 14, 1552.CrossrefGoogle Scholar

  • [39]

    M. Fischer, R. G. Bell, A dispersion-corrected density-functional theory study of small molecules adsorbed in alkali-exchanged chabazites. Z. Kristallogr. - Cryst. Mater. 2013, 228, 124.Google Scholar

  • [40]

    M. Fischer, R. G. Bell, Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: Predictions from dispersion-corrected DFT calculations. Phys. Chem. Chem. Phys. 2014, 16, 21062.CrossrefGoogle Scholar

  • [41]

    J. Shang, G. Li, R. Singh, P. Xiao, D. Danaci, J. Z. Liu, P. A. Webley, Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: a combination of van der Waals density functional theory calculations and experiment study. J. Chem. Phys. 2014, 140, 084705.Google Scholar

  • [42]

    J. Zhang, R. Singh, P. A. Webley, Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 2008, 111, 478.Google Scholar

  • [43]

    M. E. Rivera-Ramos, A. J. Hernández-Maldonado, Adsorption of N2 and CH4 by ion-exchanged silicoaluminophosphate nanoporous sorbents: Interaction with monovalent, divalent, and trivalent cations. Ind. Eng. Chem. Res. 2007, 46, 4991.CrossrefGoogle Scholar

  • [44]

    M. E. Rivera-Ramos, G. J. Ruiz-Mercado, A. J. Hernández-Maldonado, Separation of CO2 from light gas mixtures using ion-exchanged silicoaluminophosphate nanoporous sorbents. Ind. Eng. Chem. Res. 2008, 47, 5602.CrossrefGoogle Scholar

  • [45]

    A. G. Arévalo-Hidalgo, N. E. Almodóvar-Arbelo, A. J. Hernández-Maldonado, Sr2+-SAPO-34 prepared via coupled partial detemplation and solid state ion exchange: Effect on textural properties and carbon dioxide adsorption. Ind. Eng. Chem. Res. 2011, 50, 10259.CrossrefGoogle Scholar

  • [46]

    J. Shang, G. Li, R. Singh, Q. Gu, K. M. Nairn, T. J. Bastow, N. Medhekar, C. M. Doherty, A. J. Hill, J. Z. Liu, P. A. Webley discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc. 2012, 134, 19246.Google Scholar

  • [47]

    J. Shang, G. Li, R. Singh, P. Xiao, J. Z. Liu, P. A. Webley, Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J. Phys. Chem. C 2013, 117, 12841.CrossrefGoogle Scholar

  • [48]

    J. Shang, G. Li, Q. Gu, R. Singh, P. Xiao, J. Z. Liu, P. A. Webley, Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites. Chem. Commun. 2014, 50, 4544.CrossrefGoogle Scholar

  • [49]

    L. Leardini, S. Quartieri, G. Vezzalini, Compressibility of microporous materials with CHA topology: 1. Natural chabazite and SAPO-34. Microporous Mesoporous Mater. 2010, 127, 219.Google Scholar

  • [50]

    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272.CrossrefGoogle Scholar

  • [51]

    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567.Google Scholar

  • [52]

    For the case of Na-SAPO-34, additional DFT-D optimisations were performed with a 2x2x2 k-mesh. Guest species from the present work, as well as from our previous study, were included [40]. The calculated interaction energies mostly range within 0.5 kJ mol–1 of the energies obtained with the gamma point only, with the largest deviation being 1.3 kJ mol–1.Google Scholar

  • [53]

    J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossrefGoogle Scholar

  • [54]

    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787.CrossrefGoogle Scholar

  • [55]

    H. Fang, P. Kamakoti, J. Zang, S. Cundy, C. Paur, P. I. Ravikovitch, D. S. Sholl, Prediction of CO2 adsorption properties in zeolites using force fields derived from periodic dispersion-corrected DFT calculations. J. Phys. Chem. C 2012, 116, 10692.CrossrefGoogle Scholar

  • [56]

    R. Poloni, B. Smit, J. B. Neaton, CO2 capture by metal-organic frameworks with van der Waals density functionals. J. Phys. Chem. A 2012, 116, 4957.CrossrefGoogle Scholar

  • [57]

    M. Fischer, R. G. Bell, Modeling CO2 adsorption in zeolites using DFT-derived charges: comparing system-specific and generic models. J. Phys. Chem. C 2013, 117, 24446.CrossrefGoogle Scholar

  • [58]

    M. Fischer, R. G. Bell, Interaction of hydrogen and carbon dioxide with sod-type zeolitic imidazolate frameworks: a periodic DFT-D study. CrystEngComm 2014, 16, 1934.CrossrefGoogle Scholar

  • [59]

    H. Ji, J. Park, M. Cho, Y. Jung, Assessments of semilocal density functionals and corrections for carbon dioxide adsorption on metal-organic frameworks. ChemPhysChem 2014, 15, 3157.CrossrefGoogle Scholar

  • [60]

    G. Li, E. A. Pidko, R. A. van Santen, Z. Feng, C. Li, E. J. M. Hensen, Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5: A comprehensive periodic DFT study. J. Catal. 2011, 284, 194.CrossrefGoogle Scholar

  • [61]

    A. Pulido, P. Nachtigall, A. Zukal, I. Domínguez, J. Čejka, Adsorption of CO2 on sodium-exchanged ferrierites: The bridged CO2 complexes formed between two extraframework cations. J. Phys. Chem. C 2009, 113, 2928.CrossrefGoogle Scholar

  • [62]

    G. D. Pirngruber, P. Raybaud, Y. Belmabkhout, J. Čejka, A. Zukal, The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Phys. Chem. Chem. Phys. 2010, 12, 13534.CrossrefGoogle Scholar

  • [63]

    R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751.CrossrefGoogle Scholar

  • [64]

    P. Ugliengo, C. Busco, B. Civalleri, C. M. Zicovich-Wilson, Carbon monoxide adsorption on alkali and proton-exchanged chabazite: an ab-initio periodic study using the CRYSTAL code. Mol. Phys. 2005, 103, 2559.CrossrefGoogle Scholar

  • [65]

    P. Tongying, Y. Tantirungrotechai, A performance study of density functional theory with empirical dispersion corrections and spin-component scaled second-order Møller-Plesset perturbation theory on adsorbate–zeolite interactions. J. Mol. Struct. THEOCHEM 2010, 945, 85.Google Scholar

  • [66]

    O. Bludský, M. Šilhan, D. Nachtigallová, P. Nachtigall, Calculations of site-specific CO stretching frequencies for copper carbonyls with the “near spectroscopic accuracy”: CO interaction with Cu+/MFI. J. Phys. Chem. A 2003, 107, 10381.CrossrefGoogle Scholar

  • [67]

    C. Kladis, S. K. Bhargava, D. B. Akolekar, Interaction of probe molecules with active sites on cobalt, copper and zinc-exchanged SAPO-18 solid acid catalysts. J. Mol. Catal. A Chem. 2003, 203, 193.CrossrefGoogle Scholar

  • [68]

    R. Bulánek, H. Drobná, P. Nachtigall, M. Rubes, O. Bludský, On the site-specificity of polycarbonyl complexes in Cu/zeolites: combined experimental and DFT study. Phys. Chem. Chem. Phys. 2006, 8, 5535.CrossrefGoogle Scholar

  • [69]

    A. J. Lupinetti, S. Fau, G. Frenking, S. H. Strauss, Theoretical analysis of the bonding between CO and positively charged atoms. J. Phys. Chem. A 1997, 101, 9551.CrossrefGoogle Scholar

  • [70]

    R. D. Johnson (ed.), NIST computational chemistry comparison and benchmark database. NIST Stand. Ref. Database Number 101, 2013, http://srdata.nist.gov/cccbdb.

  • [71]

    J. F. M. Denayer, L. I. Devriese, S. Couck, J. Martens, R. Singh, P. A. Webley, G. V. Baron, Cage and window effects in the adsorption of n-alkanes on chabazite and SAPO-34. J. Phys. Chem. C 2008, 112, 16593.CrossrefGoogle Scholar

  • [72]

    M. W. Ackley, R. T. Yang, Adsorption characteristics of high-exchange clinoptilolites. Ind. Eng. Chem. Res. 1991, 30, 2523.CrossrefGoogle Scholar

  • [73]

    O. Cairon, H. Guesmi, How does CO capture process on microporous NaY zeolites? A FTIR and DFT combined study. Phys. Chem. Chem. Phys. 2011, 13, 11430.CrossrefGoogle Scholar

  • [74]

    S. Bordiga, L. Regli, D. Cocina, C. Lamberti, M. Bjørgen, K. P. Lillerud, Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34. J. Phys. Chem. B 2005, 109, 2779.Google Scholar

  • [75]

    S. Savitz, A. L. Myers, R. J. Gorte, A calorimetric investigation of CO, N2, and O2 in alkali-exchanged MFI. Microporous Mesoporous Mater. 2000, 37, 33.Google Scholar

  • [76]

    T. A. Egerton, F. S. Stone, Adsorption of carbon monoxide by calcium-exchanged zeolite Y. Trans. Faraday Soc. 1970, 66, 2364.CrossrefGoogle Scholar

  • [77]

    F. N. Ridha, P. A. Webley, Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption on alkali- exchanged chabazite zeolites. Separ. Purif. Technol. 2009, 67, 336.CrossrefGoogle Scholar

  • [78]

    Y. Kuroda, A. Itadani, R. Kumashiro, T. Fujimoto, M. Nagao, Anomalous valence changes and specific dinitrogen adsorption features of copper ion exchanged in ZSM-5 zeolite prepared from an aqueous solution of [Cu(NH3)2]+. Phys. Chem. Chem. Phys. 2004, 6, 2534.Google Scholar

  • [79]

    J. Sebastian, R. V. Jasra, Anomalous adsorption of nitrogen and argon in silver exchanged zeolite. Chem. Commun., 2003, 268.CrossrefGoogle Scholar

  • [80]

    K. Lee, W. C. Isley, A. L. Dzubak, P. Verma, S. J. Stoneburner, L.-C. Lin, J. D. Howe, E. D. Bloch, D. A. Reed, M. R. Hudson, C. M. Brown, J. R. Long, J. B. Neaton. B. Smit, C. J. Cramer, D. G. Truhlar, L. Gagliardi, Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4. J. Am. Chem. Soc. 2014, 136, 698.Google Scholar

About the article

Corresponding author: Michael Fischer, Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße 2, 28359 Bremen, Germany; and Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK, E-mail:

Received: 2014-09-15

Accepted: 2014-11-04

Published Online: 2014-12-12

Published in Print: 2015-05-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 5, Pages 311–323, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1802.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hanjun Fang, Rohan Awati, Salah E. Boulfelfel, Peter I. Ravikovitch, and David S. Sholl
The Journal of Physical Chemistry C, 2018

Comments (0)

Please log in or register to comment.
Log in