Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 230, Issue 5

Issues

Structure and bonding of water molecules in zeolite hosts: Benchmarking plane-wave DFT against crystal structure data

Michael Fischer
  • Corresponding author
  • Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Klagenfurter Straße 2, Universität Bremen, 28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-12 | DOI: https://doi.org/10.1515/zkri-2014-1809

Abstract

Density-functional theory (DFT) calculations are widely employed to study the interaction of water molecules with zeolite frameworks. However, there have been only few attempts to assess whether these computations reproduce experimental structure data sufficiently well, especially with regard to the hydrogen positions of the water molecules. In this work, a detailed comparison between experimental crystal structures and DFT-optimised structures is made for six water-loaded natural zeolites. For each system, high-quality structure determinations from neutron diffraction data have been reported (bikitaite/Li–BIK, edingtonite/Ba–EDI, gismondine/Ca–GIS, scolecite/Ca–NAT, natrolite/Na–NAT, yugawaralite/Ca–YUG). Using a plane-wave DFT approach, the performance of six pure and three dispersion-corrected exchange-correlation functionals is compared, focusing on an optimisation of the atomic coordinates in a fixed unit cell (with cell parameters taken from experiment). It is found that the PBE and the PW91 functional give the smallest overall deviation between experiment and computation. Of the dispersion-corrected approaches, the PBE–TS functional exhibits the best performance. For the PBE and PBE–TS functionals, the agreement between experiment and DFT is analysed in more detail for different groups of interatomic distances. Regarding the OW–H distances in the water molecules, the DFT optimisations lead to physically realistic bond lengths. On the other hand, DFT has a systematic tendency to underestimate the length of hydrogen bonds. The cation-oxygen distances are mostly in very good agreement with experiment, although some exceptions indicate the necessity of further studies.

This article offers supplementary material which is provided at the end of the article.

Keywords: benchmarking; computational chemistry; density-functional theory; water adsorption; zeolites

References

  • [1]

    A. Di Lella, N. Desbiens, A. Boutin, I. Demachy, P. Ungerer, J.-P. Bellat, A. H. Fuchs, Molecular simulation studies of water physisorption in zeolites. Phys. Chem. Chem. Phys. 2006, 8, 5396.PubMedCrossrefGoogle Scholar

  • [2]

    D. Bougeard, K. S. Smirnov, Modelling studies of water in crystalline nanoporous aluminosilicates. Phys. Chem. Chem. Phys. 2007, 9, 226.CrossrefWeb of SciencePubMedGoogle Scholar

  • [3]

    F.-X. Coudert, F. Cailliez, R. Vuilleumier, A. H. Fuchs, A. Boutin, Water nanodroplets confined in zeolite pores. Faraday Discuss. 2009, 141, 377.Web of ScienceGoogle Scholar

  • [4]

    E.-P. Ng, S. Mintova, Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 2008, 114, 1.Google Scholar

  • [5]

    S. K. Henninger, F. P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 2010, 30, 1692.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    A. Ristić, N. Z. Logar, S. K. Henninger, V. Kaučič, The performance of small-pore microporous aluminophosphates in low-temperature solar energy storage: the structure-property relationship. Adv. Funct. Mater. 2012, 22, 1952.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Y. G. Bushuev, G. Sastre, J. V. de Julián-Ortiz, J. Gálvez, Water–hydrophobic zeolite systems. J. Phys. Chem. C 2012, 116, 24916.Google Scholar

  • [8]

    R. X. Fischer, M. Sehovic, W. H. Baur, C. Paulmann, T. M. Gesing, Crystal structure and morphology of fully hydrated zeolite Na-A. Z. Kristallogr. – Cryst. Mater. 2012, 227, 438.Google Scholar

  • [9]

    W. H. Baur, R. X. Fischer, ZeoBase, A new kind of crystal structure database, in: Proc. 16th Int. Zeolite Conf., A. De Frede (ed.), Sorrento, Italy, 2010.Google Scholar

  • [10]

    T. Demuth, L. Benco, J. Hafner, H. Toulhoat, Adsorption of water in mordenite – An ab initio study. Int. J. Quantum Chem. 2001, 84, 110.Google Scholar

  • [11]

    F. Labat, A. H. Fuchs, C. Adamo, Toward an Accurate Modeling of the Water–Zeolite Interaction: Calibrating the DFT Approach. J. Phys. Chem. Lett. 2010, 1, 763.Web of ScienceGoogle Scholar

  • [12]

    S. Quartieri, A. Sani, G. Vezzalini, E. Galli, E. Fois, A. Gamba, G. Tabacchi, One-dimensional ice in bikitaite: single-crystal X-ray diffraction, infra-red spectroscopy and ab-initio molecular dynamics studies. Microporous Mesoporous Mater. 1999, 30, 77.Google Scholar

  • [13]

    E. Fois, A. Gamba, G. Tabacchi, S. Quartieri, G. Vezzalini, On the collective properties of water molecules in one-dimensional zeolitic channels. Phys. Chem. Chem. Phys. 2001, 3, 4158.CrossrefGoogle Scholar

  • [14]

    E. Fois, A. Gamba, G. Tabacchi, S. Quartieri, G. Vezzalini, Water molecules in single file: first-principles studies of one-dimensional water chains in zeolites. J. Phys. Chem. B 2001, 105, 3012.Google Scholar

  • [15]

    L. Grajciar, O. Bludský, P. Nachtigall, Water adsorption on coordinatively unsaturated sites in CuBTC MOF. J. Phys. Chem. Lett. 2010, 1, 3354.Google Scholar

  • [16]

    J. Toda, M. Fischer, M. Jorge, J. R. B. Gomes, Water adsorption on a copper formate paddlewheel model of CuBTC: a comparative MP2 and DFT study. Chem. Phys. Lett. 2013, 587, 7.Web of ScienceGoogle Scholar

  • [17]

    A. V. Larin, D. N. Trubnikov, D. P. Vercauteren, Influence of hydrogen bonding on the properties of water molecules adsorbed in zeolite frameworks. Int. J. Quantum Chem. 2003, 92, 71.CrossrefGoogle Scholar

  • [18]

    A. V. Larin, D. N. Trubnikov, D. P. Vercauteren, Improvement of X-ray diffraction geometries of water physisorbed in zeolites on the basis of periodic Hartree-Fock calculations. Int. J. Quantum Chem. 2005, 102, 971.Google Scholar

  • [19]

    K. Ståhl, Å. Kvick, S. Ghose, One-dimensional water chain in the zeolite bikitaite: Neutron diffraction study at 13 and 295 K. Zeolites 1989, 9, 303.Google Scholar

  • [20]

    I. A. Belitsky, S. P. Gabuda, W. Joswig, H. Fuess, Study of the structure and dynamics of the water in the zeolite edingtonite at low temperature by neutron diffraction and NMR-spectroscopy, N. Jahrb. Mineral. Monatsh. 1986, 12, 541.Google Scholar

  • [21]

    G. Artioli, R. Rinaldi, Å. Kvick, J. V. Smith, Neutron diffraction structure refinement of the zeolite gismondine at 15 K. Zeolites 1986, 6, 361.CrossrefGoogle Scholar

  • [22]

    Å. Kvick, K. Ståhl, A neutron diffraction study of the bonding of zeolitic water in scolecite at 20 K. Z. Kristallogr. – Cryst. Mater. 1985, 171, 141.Google Scholar

  • [23]

    G. Artioli, J. V. Smith, Å. Kvick, Neutron diffraction study of natrolite, Na2Al2Si3O10·2H2O, at 20 K. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1984, 40, 1658.Google Scholar

  • [24]

    Å. Kvick, G. Artioli, J. V. Smith, Neutron diffraction study of the zeolite yugawaralite at 13 K. Z. Kristallogr. – Cryst. Mater. 1986, 174, 265.Google Scholar

  • [25]

    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. – Cryst. Mater. 2005, 220, 567.Google Scholar

  • [26]

    V. Milman, K. Refson, S. J. Clark, C. J. Pickard, J. R. Yates, S.-P. Gao, P. J. Hasnip, M. I. J. Probert, A. Perlov, M. D. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J. Mol. Struct. THEOCHEM 2010, 954, 22.Web of ScienceGoogle Scholar

  • [27]

    P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 2009, 79, 085104.Web of ScienceGoogle Scholar

  • [28]

    J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048.CrossrefGoogle Scholar

  • [29]

    J. P. Perdew, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671.Web of ScienceGoogle Scholar

  • [30]

    J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.Google Scholar

  • [31]

    J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, K. Burke, restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.Web of ScienceGoogle Scholar

  • [32]

    Z. Wu, R. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116.Web of ScienceGoogle Scholar

  • [33]

    B. Hammer, L. B. Hansen, J. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413.Google Scholar

  • [34]

    F. Ortmann, F. Bechstedt, W. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 2006, 73, 205101.Google Scholar

  • [35]

    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787.CrossrefGoogle Scholar

  • [36]

    A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.Google Scholar

  • [37]

    C. M. Zicovich-Wilson, M. L. San-Román, M. A. Camblor, F. Pascale, J. S. Durand-Niconoff, Structure, vibrational analysis, and insights into host-guest interactions in as-synthesized pure silica ITQ-12 zeolite by periodic B3LYP calculations. J. Am. Chem. Soc. 2007, 129, 11512.Google Scholar

  • [38]

    J. Ireta, J. Neugebauer, M. Scheffler, On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J. Phys. Chem. A 2004, 108, 5692.Google Scholar

  • [39]

    D. Tunega, T. Bučko, A. Zaoui, Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. J. Chem. Phys. 2012, 137, 114105.Web of ScienceGoogle Scholar

  • [40]

    W. R. Busing, H. A. Levy, The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallogr. 1964, 17, 142.CrossrefGoogle Scholar

  • [41]

    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272.Web of ScienceGoogle Scholar

  • [42]

    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, CRYSTAL14: A program for the ab initio investigation of crystalline solids, Int. J. Quantum Chem. 2014, 114, 1287.Web of ScienceGoogle Scholar

  • [43]

    L. Rao, H. Ke, G. Fu, X. Xu, Y. Yan, Performance of several density functional theory methods on describing hydrogen-bond interactions. J. Chem. Theory Comput. 2009, 5, 86.CrossrefGoogle Scholar

  • [44]

    K. S. Thanthiriwatte, E. G. Hohenstein, L. A. Burns, C. D. Sherrill, Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J. Chem. Theory Comput. 2011, 7, 88.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Michael Fischer, Fachgebiet Kristallographie, Fachbereich Geowissenschaften, Klagenfurter Straße 2, Universität Bremen, 28359 Bremen, Germany, E-mail:


Received: 2014-10-09

Accepted: 2014-12-14

Published Online: 2015-02-12

Published in Print: 2015-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 5, Pages 325–336, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1809.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Matteo Fasano, Daniele Borri, Annalisa Cardellini, Matteo Alberghini, Matteo Morciano, Eliodoro Chiavazzo, and Pietro Asinari
Energy Procedia, 2017, Volume 126, Page 509
[2]
Ilya A. Bryukhanov, Andrey A. Rybakov, Alexander V. Larin, Dmitry N. Trubnikov, and Daniel P. Vercauteren
Journal of Molecular Modeling, 2017, Volume 23, Number 3
[3]
Michael Fischer, Felix O. Evers, Filip Formalik, and Adam Olejniczak
Theoretical Chemistry Accounts, 2016, Volume 135, Number 12

Comments (0)

Please log in or register to comment.
Log in