Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 230, Issue 5 (May 2015)

Issues

Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group

Rui F. Munhá
  • CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Duarte Ananias
  • CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Filipe A. Almeida Paz
  • Corresponding author
  • CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ João Rocha
  • Corresponding author
  • CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-14 | DOI: https://doi.org/10.1515/zkri-2014-1811

Abstract

The synthesis and structural characterization of two novel trivalent neodymium microporous silicates whose structures are reminiscent of the structure of mineral montregianite of the rhodesite group, and their infrared light-emission properties are reported. The compound KNa2Nd[Si8O19]·5H2O (1) crystallizes in the orthorhombic Pmma space group: a = 23.9016(17) Å, b = 6.9980(5) Å, c = 6.5474(5) Å. Heating 1 at 200 °C for 40 min affords a new partially dehydrated phase, KNa2Nd[Si8O19]·2.8H2O (2), also crystallizing in the orthorhombic Pmma space group: a = 23.923(4) Å, b = 6.9950(11) Å, c = 6.5474(10) Å. Compound 2 is the hydrated phase with the lowest content of water molecule reported to date in the rhodesite mineral series.

This article offers supplementary material which is provided at the end of the article.

Keywords: crystal structures; microporous lanthanide silicates; montregianite; rhodesite

References

  • [1]

    E. Cannillo, G. Rossi, L. Ungaretti, Crystal structure of MacDonaldite. Accad. Naz. Lincei. 1968, 45, 399.Google Scholar

  • [2]

    K. G. Ragimov, M. I. Chiragov, K. S. Mamedov, Crystal structure of a new synthetic silicate: KHOCOSI2O7. Dokl. Akad. Nauk SSSR 1980, 253, 1130.Google Scholar

  • [3]

    D. Ananias, A. Ferreira, J. Rocha, P. Ferreira, J. P. Rainho, C. Morais, L. D. Carlos, Novel microporous europium and terbium silicates. J. Am. Chem. Soc. 2001, 123, 5735.Google Scholar

  • [4]

    D. Ananias, J. P. Rainho, A. Ferreira, J. Rocha, L. D. Carlos, The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. J. Alloys Compounds 2004, 374, 219.Google Scholar

  • [5]

    M. Cadoni, G. Ferraris, Two new silicate structures based on a rhodesite-type heteropolyhedral microporous framework. Acta Crystallogr. Sect. B-Struct. Sci. 2010, 66, 151.Web of ScienceGoogle Scholar

  • [6]

    M. Cadoni, G. Ferraris, Two new members of the rhodesite mero-plesiotype series close to delhayelite and hydrodelhayelite: synthesis and crystal structure. Eur. J. Mineral. 2009, 21, 485.Web of ScienceGoogle Scholar

  • [7]

    T. Kottke, D. Stalke, Crystal handling at low temperatures. J. Appl. Crystallogr. 1993, 26, 615.CrossrefGoogle Scholar

  • [8]

    APEX2. Data Collection Software Version 2012.4, Bruker AXS, Delft, The Netherlands, 2012.Google Scholar

  • [9]

    SAINT+. Data Integration Engine v. 8.27b©, Bruker AXS, Madison, Wisconsin, USA, 1997–2012..Google Scholar

  • [10]

    G. M. Sheldrick, SADABS 2012/1, Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS, Madison, Wisconsin, USA, 2012.Google Scholar

  • [11]

    G. M. Sheldrick, SHELXT-2014/3, Program for Crystal Structure Solution, University of Göttingen, 2014.Google Scholar

  • [12]

    G. M. Sheldrick, A short history of SHELX. Acta Cryst. A 2008, 64, 112.Google Scholar

  • [13]

    G. M. Sheldrick, SHELXL Version 2014/6, Program for Crystal Structure Refinement, University of Göttingen, 2014.Google Scholar

  • [14]

    C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281.Web of ScienceGoogle Scholar

  • [15]

    K. Brandenburg, DIAMOND, Version 3.2f. Crystal Impact GbR, Bonn, Germany, 1997–2010.Google Scholar

  • [16]

    G. Ferraris, E. Belluso, A. Gula, S. V. Soboleva, A. P. Khomyakov, The crystal structure of seidite-(Ce), Na4(Ce,Sr)2{Ti(OH)2(Si8O18}(O,OH,F)4·5H2O, a modular microporous titanosilicate of the rhodesite group. Can. Mineral. 2003, 41, 1183.Google Scholar

  • [17]

    K. F. Hesse, F. Liebau, S. Merlino, Crystal structure of rhodesite, HK1-xNax+2yCa2-y {1B,3,22}[Si8O19]·(6-z)H2O, from three localities and its relation to other silicates with dreier double layers. Z. Kristallogr. 1992, 199, 25.Google Scholar

  • [18]

    I. V. Pekov, N. V. Zubkova, N. V. Chukanov, V. V. Sharygin, D. Y. Pushcharovsky, Crystal chemistry of delhayelite and hydrodelhayelite. Dokl. Earth Sci. 2009, 428, 1216.Web of ScienceGoogle Scholar

  • [19]

    S. Ghose, P. K. Sengupta, C. F. Campana, Symmetry and crystal ctructure of Montregianite, Na4K2Y2Si16O38·10H2O, a double sheet silicate with zeolitic properties. Am. Mineral. 1987, 72, 365.Google Scholar

  • [20]

    J. Rocha, P. Ferreira, L. D. Carlos, A. Ferreira, The first microporous framework cerium silicate. Angew. Chem. Int. Ed. 2000, 39, 3276.Google Scholar

  • [21]

    W. H. Baur, The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. Sect. B-Struct. Sci. 1974, 30, 1195.Google Scholar

  • [22]

    L. B. McCusker, F. Liebau, G. Engelhardt, Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous Mesoporous Mater. 2003, 58, 3.Google Scholar

  • [23]

    Y. L. Xue, P. Wu, Y. Liu, X. Zhang, L. Lin, Q. Jiang, Highly efficient near-IR photoluminescence of Er3+ immobilized in mesoporous SBA-15, Nanoscale Res. Lett. 2010, 5, 1952.Web of ScienceGoogle Scholar

About the article

Corresponding authors: Filipe A. Almeida Paz and João Rocha, CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, E-mail: ,


Received: 2014-10-19

Accepted: 2015-02-14

Published Online: 2015-03-14

Published in Print: 2015-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1811.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in