Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Bismayer, Ulrich / Boldyreva, Elena V. / Huppertz, Hubert / Petrícek, Václav / Tiekink, E. R. T.

12 Issues per year


IMPACT FACTOR 2016: 3.179

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.097
Source Normalized Impact per Paper (SNIP) 2016: 2.592

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 230, Issue 5 (May 2015)

Issues

On the relationship between unit cells and channel systems in high silica zeolites with the “butterfly” projection

Peng Guo
  • Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Wan
  • Corresponding author
  • Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lynne McCusker
  • Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Laboratory of Crystallography, ETH Zurich, CH-8093 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Baerlocher / Xiaodong Zou
  • Corresponding author
  • Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-28 | DOI: https://doi.org/10.1515/zkri-2014-1821

Abstract

Zeolites are crystalline aluminosilicate framework materials with corner sharing TO4 (T = Al, Si) tetrahedra forming well-defined pores and channels. Many zeolites are built from similar building units (i.e., isolated units, chains or layers), which are connected in different ways to form a variety of topologies. We have identified ten zeolite frameworks that share the same two-dimensional “butterfly” net containing 5-, 6- and 10-rings: *MRE, FER, MEL, SZR, MFS, MFI, TUN, IMF, BOG and TON. Different orientations of the TO4 tetrahedra within the layer lead to different connectivities between neighboring layers. Some layers are corrugated and some are flat, resulting in different channel systems parallel to the layer. We found some interesting relationships between the unit cell parameters and this channel system that allow the size of the channels and their directions to be deduced from the unit cell dimensions. This may facilitate the prediction of new members of this zeolite family. In addition, other zeolites containing the “butterfly” layers are also discussed.

Keywords: structure prediction; structure relationship; structure solution; zeolites

References

  • [1]

    C. Baerlocher, L. B. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases/. The 3-letter codes assigned to the unique framework types in this database are given for each material in boldface text throughout the manuscript.

  • [2]

    W. Baur, On cation + water positions in faujasite. Am. Mineral. 1964, 49, 697.Google Scholar

  • [3]

    G. T. Kokotailo, S. L. Lawton, D. H. Olson, W. M. Meier, Structure of synthetic zeolite ZSM-5. Nature 1978, 272, 437.Google Scholar

  • [4]

    W. M. Meier, The crystal structure of mordenite (ptilolite)*. Z. Kristallogr. 1961, 115, 439.Google Scholar

  • [5]

    P. A. Vaughan, The crystal structure of the zeolite ferrierite. Acta Crystallogr. 1966, 21, 983.Google Scholar

  • [6]

    J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, C. B. D. Gruyter, Structural characterization of zeolite beta. Proc. R Soc. Lond. Math. Phys. Sci. 1988, 420, 375.Google Scholar

  • [7]

    R. Barrer, H. Villiger, Crystal structure of synthetic zeolite L. Z. Kristallogr. 1969, 128, 352.Google Scholar

  • [8]

    R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 2011, 13, 12407.Web of ScienceGoogle Scholar

  • [9]

    M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Z. Kristallogr. 1997, 212, 768.Google Scholar

  • [10]

    Y. Li, J. Yu, New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 2014, 114, 7268.Web of ScienceGoogle Scholar

  • [11]

    M. W. Deem, R. Pophale, P. A. Cheeseman, D. J. Earl, Computational discovery of new zeolite-like materials. J. Phys. Chem. C 2009, 113, 21353.Web of ScienceGoogle Scholar

  • [12]

    M. D. Foster, M. M. J. Treacy, Progress towards an atlas of designer zeolites. In Stud. Surf. Sci. Catal., (Eds. R. Xu, Z. Gao J. Chen and W. Yan) Elsevier, Amsterdam. 2007, p. 666.CrossrefGoogle Scholar

  • [13]

    A. Le Bail, Predicted Crystallography Open Database.Google Scholar

  • [14]

    H. Gies, H. van Koningsveld, Catalog of disorder in zeolite frameworks. http://www.iza-structure.org/databases/.

  • [15]

    F. Hawthorne, J. Smith, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates combination of zigzag and saw chains with 63, 3.122, 4.82, 4.6.12 and (52.8)2(5.82)1 Nets. Z. Kristallogr. 1988, 183, 213.Google Scholar

  • [16]

    L. B. McCusker, C. Baerlocher, Chapter 2 Zeolite structures. In Stud. Surf. Sci. Catal., (Eds. J. Čejka, H. van B., A. Corma and F. Schüth) Elsevier, Amsterdam. 2007,p. 13.CrossrefGoogle Scholar

  • [17]

    J. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman, J. D. Wood, G. T. Kerr, W. J. Rohrbaugh, The framework topology of zeolite beta. Zeolites. 1988, 8, 446.CrossrefGoogle Scholar

  • [18]

    A. W. Burton, S. Elomari, I. Chan, A. Pradhan, C. Kibby, Structure and synthesis of SSZ-63: toward an ordered form of Zeolite beta. J. Phys. Chem. B 2005, 109, 20266.Google Scholar

  • [19]

    Z. B. Yu, Y. Han, L. Zhao, S. L. Huang, Q. Y. Zheng, S. Z. Lin, A. Cordova, X. D. Zou, J. L. Sun, Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal x-ray diffraction. Chem. Mater. 2012, 24, 3701.Web of ScienceCrossrefGoogle Scholar

  • [20]

    L. Q. Tang, L. Shi, C. Bonneau, J. L. Sun, H. J. Yue, A. Ojuva, B. L. Lee, M. Kritikos, R. G. Bell, Z. Bacsik, et al. A zeolite family with chiral and achiral structures built from the same building layer. Nat. Mater. 2008, 7, 381.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    A. W. Burton, Structure solution of zeolites from powder diffraction data. Z. Kristallogr. 2009, 219, 866.Google Scholar

  • [22]

    The most common composite building units have been assigned codes by the IZA-SC and are listed in the Database of Zeolite Structures.Google Scholar

  • [23]

    D. Xie, L. B. McCusker, C. Baerlocher, S. I. Zones, W. Wan, X. D. Zou, SSZ-52, a Zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. J. Am. Chem. Soc. 2013, 135, 10519.Google Scholar

  • [24]

    M. Moliner, T. Willhammar, W. Wan, J. Gonzalez, F. Rey, J. L. Jorda, X. D. Zou, A. Corma, Synthesis design and structure of a multipore zeolite with interconnected 12-and 10-MR channels. J. Am. Chem. Soc. 2012, 134, 6473.Google Scholar

  • [25]

    D. Akporiaye, Structural relationships of zeolite frameworks – 5-ring zeolites. Z. Kristallogr. 1989, 188, 103.Google Scholar

  • [26]

    J. L. Schlenker, W. J. Rohrbaugh, P. Chu, E. W. Valyocsik, G. T. Kokotailo, The framework topology of ZSM-48: A high silica zeolite. Zeolites 1985, 5, 355.CrossrefGoogle Scholar

  • [27]

    C. A. Fyfe, H. Gies, G. T. Kokotailo, C. Pasztor, H. Strobl, D. E. Cox, Detailed investigation of the lattice structure of zeolite ZSM-11 by a combination of solid-state NMR and synchrotron x-ray diffraction techniques. J. Am. Chem. Soc. 1989, 111, 2470.Google Scholar

  • [28]

    K. G. Strohmeier, M. Afeworki, D. L. Dorset, The crystal structures of polymorphic SUZ-4. Z. Kristallogr. 2009, 221, 689.Google Scholar

  • [29]

    J. L. Schlenker, J. B. Higgins, E. W. Valyocsik, The framework topology of ZSM-57: a new synthetic zeolite. Zeolites 1990, 10, 293.CrossrefGoogle Scholar

  • [30]

    F. Gramm, C. Baerlocher, L. B. McCusker, S. J. Warrender, P. A. Wright, B. Han, S. B. Hong, Z. Liu, T. Ohsuna, O. Terasaki, Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 2006, 444, 79.Google Scholar

  • [31]

    C. Baerlocher, F. Gramm, L. Massuger, L. B. McCusker, Z. B. He, S. Hovmoller, X. D. Zou, Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 2007, 315, 1113.Google Scholar

  • [32]

    J. Pluth, J. Smith, Crystal-structure of boggsite, a new high-silica zeolite with the 1st 3-dimensional channel system bounded by both 12-rings and 10-rings. Am. Mineral. 1990, 75, 501.Google Scholar

  • [33]

    S. A. I. Barri, G. W. Smith, D. White, D. Young, Structure of theta-1, the first unidimensional medium-pore high-silica zeolite. Nature 1984, 312, 533.Google Scholar

  • [34]

    B. Marler, C. Deroche, H. Gies, C. A. Fyfe, H. Grondey, G. T. Kokotailo, Y. Feng, S. Ernst, J. Weitkamp, D. E. Cox, The structure of zeolite ZSM-23 (MTT) refined from synchrotron X-ray powder data. J. Appl. Crystallogr. 1993, 26, 636.CrossrefGoogle Scholar

  • [35]

    W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour, S. E. Ashbrook, P. Chlubná, L. Grajciar, M. Položij, A. Zukal, et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013, 5, 628.Web of ScienceCrossrefGoogle Scholar

  • [36]

    Ch. Baerlocher, D. Xie, L.B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat. Mater. 2008, 7, 631.Web of ScienceCrossrefGoogle Scholar

  • [37]

    E. Verheyen, L. Joos, K. Van Havebergh, E. Breynaert, N. Kasian, E. Gobechiya, K. Houthoofd, C. Martineau, M. Hinterstein, F. Taulelle, V. Van Speybroeck, M. Waroquier, S. Bals, G. Van Tendeloo, Inverse sigma transofrmation. Nat. Mater.2012, 11, 1059.Google Scholar

  • [38]

    S. Elomari, A. Burton, R. C. Medrud, R. Grosse-Kunstleve, The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites. Microporous Mesoporous Mat. 2009, 118, 325.Google Scholar

  • [39]

    R.F. Lobo, M. E. Davis, CIT-1: a new molecular sieve with intersecting pores bounded by 10- and 12-rings. J. Am. Chem. Soc. 1995, 117, 3766.Google Scholar

  • [40]

    E. Galli, S. Quartieri, G. Vezzalini, A. Alberti, M. Franzini, Terranovaite from antarctica: a new ‘pentasil’ zeolite. Am. Mineral. 1997, 82, 423.Google Scholar

  • [41]

    H. Gies, Studies on clathrasils. III. Crystal structure of melanophlogite, a natural clathrate compound of silica. Z. Kristallogr. 1983, 164, 247.Google Scholar

  • [42]

    J. L. Schlenker, F. G. Dwyer, E. E. Jenkins, W. J. Rohrbaugh, G. T. Kokotailo, W. M. Meier, Crystal structure of a synthetic high silica zeolite – ZSM-39. Nature 1981, 294, 340.Google Scholar

  • [43]

    J. Plévert, Y. Kubota, T. Honda, T. Okubo, Y. Sugi, GUS-1: a mordenite-like molecular sieve with the 12-ring channel of ZSM-12. Chem. Commun. 2000, 2363.Google Scholar

  • [44]

    V. A. Blatov, Struct. Chem. 2012, 23, 955. (http://topospro.com).

About the article

Corresponding authors: Wei Wan and Xiaodong Zou, Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; and Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden, E-mail: ,


Received: 2014-11-19

Accepted: 2015-02-23

Published Online: 2015-03-28

Published in Print: 2015-05-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1821.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in