Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 230, Issue 6


Information on real-structure phenomena in metastable GeTe-rich germanium antimony tellurides (GeTe)nSb2Te3 (n ≥ 3) by semi-quantitative analysis of diffuse X-ray scattering

Philipp Urban
  • Faculty of Chemistry and Mineralogy, Leipzig University, IMKM, Scharnhorststr. 20, 04275 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias N. Schneider / Marten Seemann / Jonathan P. Wright / Oliver Oeckler
  • Corresponding author
  • Faculty of Chemistry and Mineralogy, Leipzig University, IMKM, Scharnhorststr. 20, 04275 Leipzig, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-03 | DOI: https://doi.org/10.1515/zkri-2014-1829


Quenching cubic high-temperature polymorphs of (GeTe)nSb2Te3 (n ≥ 3) yields metastable phases whose average structures can be approximated by the rocksalt type with 1/(n + 3) cation vacancies per anion. Corresponding diffraction patterns are a superposition of intensities from individual twin domains with trigonal average structure but pseudo-cubic metrics. Their four orientations are mirrored in structured diffuse streaks that interconnect Bragg reflections along the [001] directions of individual disordered trigonal domains. These streaks exhibit a “comet-like” shape with a maximum located at the low-angle side of Bragg positions (“comet head”) accompanied by a diffuse “comet tail”. 2D extended cation defect ordering leads to parallel but not equidistantly spaced planar faults. Based on a stacking fault approach, the diffuse scattering was simulated with parameters that describe the overall metrics, the concentration and distribution of cation defect layers, atom displacements in their vicinity and the stacking sequence of Te atom layers around the planar defects. These parameters were varied in order to derive simple rules for the interpretation of the diffuse scattering. The distance between Bragg positions and “comet heads” increases with the frequency of planar faults. A sharp distance distribution of the planar faults leads to an intensity modulation along the “comet tail” which for low values of n approximates superstructure reflections. The displacement of atom layers towards the planar defects yields “comets” on the low-angle side of Bragg positions. A rocksalt-type average structure is only present if the planar defects correspond to missing cation layers in the “cubic” ABC stacking sequence of the Te atom layers. An increasing amount of hexagonal ABA transitions around the defect layers leads to increasing broadening and splitting of the Bragg reflections which then overlap with the diffuse scattering. Based on these rules, the diffuse scattering of (GeTe)nSb2Te3 (n = 2, 4, 5, 12) crystals was analyzed by comparing simulated and experimental reciprocal space sections as well as selected streaks extracted from synchrotron data. With decreasing n, both the average distance between faults and thus the slab thickness decrease, whereas the probability of hexagonal ABA transitions increases. The quenched metastable phases can be understood as intermediates between the stable high-temperature phases, which exhibit a rocksalt-type structure with randomly disordered cations and vacancies on the cation position, and the trigonal layered structures, which are stable at room temperature and consist of distorted rocksalt-type slabs separated by equidistant defect layers.

This article offers supplementary material which is provided at the end of the article.

Keywords: diffuse scattering; disordered structures; germanium antimony tellurides; metastable phases; synchrotron radiation


  • [1]

    W. Bensch, M. Wuttig. Chem. unserer Zeit 2010, 44, 92.Google Scholar

  • [2]

    M. Wuttig, N. Yamada. Nat. Mater. 2007, 6, 824.PubMedGoogle Scholar

  • [3]

    D. Lencer, M. Salinga, M. Wuttig. Adv. Mater. 2011, 23, 2030.PubMedGoogle Scholar

  • [4]

    S. Raoux. Annu. Rev. Mater. Res. 2009, 39, 9.1.Google Scholar

  • [5]

    S. Raoux, W. Wełnic, D. Ielmini. Chem. Rev. 2010, 110, 240.PubMedGoogle Scholar

  • [6]

    T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, O. Oeckler. Chem. Mater. 2011, 23, 4349.Google Scholar

  • [7]

    M. N. Schneider, T. Rosenthal, C. Stiewe, O. Oeckler. Z. Kristallogr. 2010, 225, 463.Google Scholar

  • [8]

    L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, M. A. Kretova, E. S. Avilov, V. S. Zemskov. Inorg. Mater. 2001, 37, 342.Google Scholar

  • [9]

    T. Matsunaga, H. Morita, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, J.-J. Kim, M. Kobata, E. Ikenaga, K. Kobayashi. J. Appl. Phys. 2008, 103, 093511.Google Scholar

  • [10]

    M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, R. Dronskowski. Nat. Mater. 2007, 6, 122.PubMedGoogle Scholar

  • [11]

    T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig. Nat. Mater. 2011, 10, 202.PubMedGoogle Scholar

  • [12]

    S. Shamoto, N. Yamada, T. Matsunaga, T. Proffen, J. W. Richardson, J.-H. Chung, T. Egami. Appl. Phys. Lett. 2005, 86, 081904.Google Scholar

  • [13]

    M. N. Scheider, P. Urban, A. Leineweber, M. Döblinger, O. Oeckler. Phys. Rev. B 2010, 81, 184102.Google Scholar

  • [14]

    C. H. Johansson, J. O. Linde. Ann. Phys. 1927, 387, 449.Google Scholar

  • [15]

    T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata. Inorg. Chem. 2006, 45, 2235.PubMedGoogle Scholar

  • [16]

    W. Wełnic, A. Pamungkas, R. Detemple. C. Steimer, S. Blügel, M. Wuttig. Nat. Mater. 2006, 5, 56.Google Scholar

  • [17]

    Z. Sun, S. Kyrsta, D. Music, R. Ahuja, J. M. Schneider. Solid State Commun. 2007, 143, 240.Google Scholar

  • [18]

    S. I. Shamoto, K. Kodama, S. Iikubo, T. Taguchi, N. Yamada, T. Proffen. Jpn. J. Appl. Phys. 2006, 45, 8789.Google Scholar

  • [19]

    J.-H. Eom, Y.-G. Yoon, C. Park, H. Lee, J. Im, D.-S. Suh, J.-S. Noh, Y. Khang, J. Ihm. Phys. Rev. B 2006, 73, 214202.Google Scholar

  • [20]

    G. B. M. Vaughan, J. P. Wright, A. Bytchkov, C. Curfs, C. Grundlach, M. Orlova, L. Erra, H. Gleyzolle, T. Buslaps, A. Götz, G. Suchet, S. Petitdemange, M. Rossat, L. Margulies, W. Ludwig, A. Snigirey, I. Snigireva, H. O. Sørensen, E. M. Lauridsen, U. L. Olsen, J. Oddershede, H. F. Poulsen. Challenges Mater. Sci. Possibilities 3D 4D Charact. Tech., Proc. Risø Int. Symp. Mater. Sci., 31st, 2010, 521, 457.Google Scholar

  • [21]

    J.-C. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. G. Ferre, C. Curfs, G. Vaughan, A. Homs, D. F. Carreiras. Rev. Sci. Instrum. 2007, 78, 091301.PubMedGoogle Scholar

  • [22]

    J. L. Chambers, K. L. Smith, M. R. Pressprich, Z. Jin, SMART V5.625, Bruker AXS, Madison, USA, 1997–2001.Google Scholar

  • [23]

    SAINT V6.01, Bruker AXS, Madison, USA, 1999.Google Scholar

  • [24]

    SADABS V2.03, Bruker AXS, Madison, USA, 1999.Google Scholar

  • [25]

    G. M. Sheldrick. Acta Crystallogr. Sect. A 2008, 64, 112.Google Scholar

  • [26]

    C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, D. S. Zucker, X-Ray Form Factor, Attenuation and Scattering Tables, Version 2.1, National Institute of Standards and Technology, Gaithersburg, MD, 2005.Google Scholar

  • [27]

    P. Urban, M. N. Schneider, L. Erra, S. Welzmiller, F. Fahrnbauer, O. Oeckler. CrystEngComm 2013, 15, 4823.Google Scholar

  • [28]

    S. Welzmiller, P. Urban, F. Fahrnbauer, L. Erra, O. Oeckler. J. Appl. Crystallogr. 2013, 46, 769.Google Scholar

  • [29]

    J. Wright, ImageD11, http://fable.svn.sourceforge.net/svnroot/fable/ImageD11/, ESRF, (Grenoble) 2005.

  • [30]

    S. Hendricks, E. Teller. J. Chem. Phys. 1942, 10, 147.Google Scholar

  • [31]

    M. M. J. Treacy, J. M. Newsam, M. W. Deem. Proc. R. Soc. London, Sect. A 1991, 433, 499.Google Scholar

  • [32]

    M. N. Schneider, X. Biquard, C. Stiewe, T. Schröder, P. Urban, O. Oeckler. Chem. Commun. 2012, 48, 2192.Google Scholar

  • [33]

    P. Urban, A. Simonov, T. Weber, O. Oeckler. J. Appl. Crystallogr. 2015, 48, 200.Google Scholar

  • [34]

    M. N. Schneider, O. Oeckler. Z. Anorg. Allg. Chem. 2008, 634, 2557.Google Scholar

  • [35]

    T. Matsunaga, N. Yamada, Y. Kubota. Acta Crystallogr. Sect. B 2004, 60, 685.Google Scholar

  • [36]

    L. E. Shelimova, O. G. Karpinskii, M. A. Kretova, V. I. Kosyakov, V. A. Shestakov, V. S. Zemskov, F. A. Kuznetsov. Inorg. Mater. 2000, 36, 768.Google Scholar

  • [37]

    O. G. Karpinsky, L. E. Shelimova, M. A. Kretova, J.-P. Fleurial. J. Alloys Compd. 1998, 268, 112.Google Scholar

  • [38]

    C. W. Sun, J. Y. Lee, Y. T. Kim. Phys. Status Solidi RRL 2009, 3, 254.Google Scholar

  • [39]

    T. Rosenthal, S. Welzmiller, L. Neudert. P. Urban, A. Fitch, O. Oeckler. J. Solid State Chem. 2014, 219, 108.Google Scholar

  • [40]

    O. Oeckler, M. N. Schneider, F. Fahrnbauer, G. Vaughan. Solid State Sci. 2011, 13, 1157.Google Scholar

  • [41]

    A. Bondi. J. Phys. Chem. 1964, 68, 441.Google Scholar

  • [42]

    T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, M. Takata. Appl. Phys. Lett. 2007, 90, 161919.Google Scholar

  • [43]

    T. Matsunaga, N. Yamada. Phys Rev. B 2004, 69, 104111.Google Scholar

  • [44]

    U. Ross, A. Lotnyk, E. Thelander, B. Rauschenbach. Appl. Phys. Lett. 2014, 104, 121904.Google Scholar

  • [45]

    F. Fahrnbauer, P. Urban, S. Welzmiller, T. Schröder, T. Rosenthal, O. Oeckler. J. Solid State Chem. 2013, 208, 20.Google Scholar

  • [46]

    S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer, P. Urban, C. Stiewe, J. de Boor, O. Oeckler. Dalton Trans. 2014, 43, 10529.Google Scholar

About the article

Corresponding author: Oliver Oeckler, Faculty of Chemistry and Mineralogy, Leipzig University, IMKM, Scharnhorststr. 20, 04275 Leipzig, Germany, E-mail:

Received: 2014-12-16

Accepted: 2015-01-13

Published Online: 2015-03-03

Published in Print: 2015-06-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 230, Issue 6, Pages 369–384, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2014-1829.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Stefan Schwarzmüller, Matthias Jakob, Markus Nentwig, Thorsten Schröder, Alexander Kuhn, Andre Düvel, Paul Heitjans, and Oliver Oeckler
Chemistry of Materials, 2018
Frank Heinke, Philipp Urban, Anton Werwein, Christina Fraunhofer, Tobias Rosenthal, Stefan Schwarzmüller, Daniel Souchay, Felix Fahrnbauer, Vadim Dyadkin, Gerald Wagner, and Oliver Oeckler
Inorganic Chemistry, 2018

Comments (0)

Please log in or register to comment.
Log in