Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.

12 Issues per year

IMPACT FACTOR 2017: 1.263
5-year IMPACT FACTOR: 2.057

CiteScore 2017: 2.65

See all formats and pricing
More options …
Volume 231, Issue 10


Crystallographic computing system Jana2006: solution and refinement of twinned structures

Václav Petříček
  • Corresponding author
  • Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Dušek
  • Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Plášil
  • Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-06 | DOI: https://doi.org/10.1515/zkri-2016-1956


Twinning is a phenomenon complicating structure analysis of single crystals of standard as well as modulated structures. Jana2006 as a software for advanced structure analysis contains tools for recognition and refinement of twins including most complicated cases of modulated and magnetic structures. In order to efficiently use the tools of Jana2006 related to twinning, we explain the basic terminology and the underlying theory, especially the symmetry of the diffraction patterns affected by twinning. We present typical diffraction patterns of twins and show how twinning can be recognized or detected by various tools and described with twinning matrices. Data processing of twins and ways of how they can be imported to Jana2006 are also discussed. Two examples demonstrate the solution of typical twins: twinning by metric merohedry and twinning by reticular merohedry, followed by the third example demonstrating twinning in a commensurately modulated structure. The relationship between the dimensionality of the structure and twinning is discussed, too.

Keywords: crystal structure analysis; Jana2006; twinning


  • [1]

    N. Steno, De solido intra solidum naturaliter contento dissertationis prodromus. Typographia sub signo Stellæ, Firenze, 1669.Google Scholar

  • [2]

    G. Friedel, Étude sur les groupements cristallins. 1904.Google Scholar

  • [3]

    G. Friedel, Leçons de Cristallographie. Nancy, Paris, Strasbourg: Berger-Levrault, 1926, XIX, 602.Google Scholar

  • [4]

    M. Catti, G. Ferraris, Acta Crystallogr. 1976, A32, 163.CrossrefGoogle Scholar

  • [5]

    M. Nespolo, G. Ferraris, Twinning by syngonic and metric merohedry. Analysis, classification and effects on the diffraction pattern. Z. Kristallogr. 2000, 212, 77.Google Scholar

  • [6]

    A. Yamamoto, Structure factor of modulated crystal structures. Acta Crystallogr. 1982, A38, 87.CrossrefGoogle Scholar

  • [7]

    V. Petříček, P. Coppens, P. Becker, Structure analysis of displacively modulated molecular crystals. Acta Crystallogr. 1985, A41, 478.Google Scholar

  • [8]

    I. Císařová, C. Novák, V. Petříček, B. Kratochvíl, J. Loub, The structure of twinned manganese(Ill) hydrogenbis(orthophosphite) dihydrate. Acta Crystallogr. 1982, B38, 1687.CrossrefGoogle Scholar

  • [9]

    V. Petříček, I. Císařová, V. Šubrtová, Structure of σ(+)-5-Bromo-6,9-bis(dimethylsulphido)-nido-deeaborane(12), C4H23B10BrS2, determined with a twinned crystal. Acta Crystallogr. 1983, C39, 1070.Google Scholar

  • [10]

    R. Herbst-Irmer, G. M. Sheldrick, Refinement of twinned structures with SHELXL97. Acta Crystallogr. 1998, B54, 443.Google Scholar

  • [11]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.Google Scholar

  • [12]

    Crysalis Pro, Rigaku Oxford diffraction, 2016.Google Scholar

  • [13]

    APEX (SMART, SAINT, SAINT-Plus, CELL NOW, SADABS, TWINABS), Bruker AXS Inc., 2016.Google Scholar

  • [14]

    S. Parsons, Introduction to twinning. Acta Crystallogr. 2003, D59, 1995.Google Scholar

  • [15]

    V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006 – General features. Z. Kristallogr. 2014, 229, 345.Google Scholar

  • [16]

    M. Nespolo, G. Ferraris, Geminography – The science of twinning applied to the early-stage derivation of non-merohedric twin laws. Z. Kristallogr. 2003, 218, 178.Google Scholar

  • [17]

    A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. 2009, D 65, 148.Google Scholar

  • [18]

    R. O. Gould, S. Parsons, D. J. Watkin, The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program. J. Appl. Cryst. 2002, 35, 168.Google Scholar

  • [19]

    T. Hahn, H. Klapper, H., Twinning of crystals. Sect. 3.3, in, InternationalTables for Crystallography, Vol. D, (Ed. A. Authier). International Union of Crystallography, Springer, 2013, 413.Google Scholar

  • [20]

    D. C. Rees, The influence of twinning by merohedry on intensity statistics. Acta Crystallogr. 1980, A36, 578.Google Scholar

  • [21]

    D. Britton, Estimation of twinning parameter for twins with exactly superimposed reciprocal lattices. Acta Crystallogr. 1972, A28, 296.CrossrefGoogle Scholar

  • [22]

    T. O. Yeates, Simple statistics for intensity data from twinned specimens. Acta Crystallogr. 1988, A44, 142.Google Scholar

  • [23]

    J. E. Paddila, T. O. Yeates, A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr. 2003, D44, 1124.Google Scholar

  • [24]

    V. Kahlenberg, Application and comparison of different tests on twinning by merohedry. Acta Crystallogr. 1999, B55, 745.Google Scholar

  • [25]

    E. Skořepová, M. Hušák, L. Ridvan, M. Tkadlecová, J. Havlíček, M. Dušek, Iodine salts of a pharmaceutical compound agomelatine: effect of symmetric H-bond on amide protonation. CrystEngComm 2016, 18, 4518.Google Scholar

  • [26]

    J. Černák, A. Pavlová, M. Dušek, K. Fejfarová, Bis(di-2-pyridylamine-κ2N2,N2’)(nitrato-κ2O,O’)nickel(II)nitrate. Acta Crystallogr. 2009, C65, m260.Google Scholar

  • [27]

    E. Gaudin, V. Petříček, F. Boucher, F. Taulelle, M. Evain, Structures and phase transitions of the A7PSe6 (A=Ag, Cu) argyrodite-type ionic conductors. III. α-Cu7PSe6. Acta Crystallogr. 2000, B64, 972.Google Scholar

  • [28]

    L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 41, 786.Google Scholar

  • [29]

    P. Murray-Rust, The crystal structure of [Co(NH3)6]4Cu5CI17: a twinned cubic crystal. Acta Crystallogr. 1973, B29, 2559.Google Scholar

  • [30]

    L. Bindi, P. Bonazzi, M. Dušek, V. Petříček, G. Chapuis, Five-dimensional structure refinement of natural melilite, (Ca1.89Sr0.01Na0.08K0.02)(Mg0.92Al0.08)-(Si1.98Al0.02)O7. Acta Crystallogr. 2001, B57, 112. 739.Google Scholar

  • [31]

    M. D. Welch, J. Jürgen Konzett, L. Bindi, S. C. Kohn, D. J. Frost, New structural features of the high-pressure synthetic sheet-disilicate Phase-X, K(2−x)Mg2Si2O7Hx. Am. Mineral. 2012, 97, 1849.Google Scholar

  • [32]

    M. D. Welch, L. Bindi, V. Petříček, J. Plášil, Vacancy pairing and superstructure in the high-pressure silicate K1.5Mg2Si2O7H0.5: a new potential host for potassium in the deep Earth. Acta Crystallogr. 2016, accepted for publication.Google Scholar

  • [33]

    K. Friese, A. Hönnerscheid, M. Jansen, Crystal structure determination of systematically intergrown compounds: Li5(OH)2Br3 and Li2(OH)Br. Z. Kristallogr. 2003, 218, 536.Google Scholar

  • [34]

    D. Topa, V. Petříček, M. Dušek, E. Makovicky, T. Balić-Žunić, Simultaneous refinement of two components of an exsolution intergrowth: crystal structures of the lindströmite – krupkaite pair. Can. Mineral. 2008, 46, 525.Google Scholar

  • [35]

    H. Krüger, V. Kahlenberg, V. Petříček, F. Phillipp, W. Wertl, High-temperature structural phase transition in Ca2Fe2O5 studied by in-situ X-ray diffraction and transmission electron microscopy. J. Solid State Chem. 2009, 182, 1515.Google Scholar

  • [36]

    Y. Le Page, The derivation of the axes of the conventional unit cell from the dimensions of the Buerger-reduced cell. J. Appl. Cryst. 1982, 15, 255.Google Scholar

  • [37]

    T. Hahn, The 230 space groups. Sect. 7.1, in, InternationalTables for Crystallography, Vol. A, (Ed. T. Hahn). International Union of Crystallography, Springer, 2006, 413.Google Scholar

  • [38]

    F. Laufek, A. Vymazalová, M. Drábek, M. Dušek, J. Navrátil, E. Černošková, The crystal structure of Pd3HgTe3, the synthetic analogue of temagamite. Eur. J. Mineral. 2016, accepted.Google Scholar

  • [39]

    S. van Smaalen, Incommensurate Crystallography – Chapter 5.3, Oxford University Press, Oxford, 2007.Google Scholar

  • [40]

    M. Mathew, M. Palenik, The crystal and molecular structures of (+)-pseudoephedrine and (+) pseudoephedrine hydroehloride. Acta Crystallogr. 1977, B33, 1016.CrossrefGoogle Scholar

  • [41]

    M. Ruf, Ch. Campana, data collection and data reduction techniques for modulated structures. Bruker presentation, 2013. Available at https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/SC-XRD/Webinars/Bruker_AXS_Advanced_Crystallography_Modulated_Structures_20130226.pdf.

About the article

Received: 2016-05-04

Accepted: 2016-08-25

Published Online: 2016-10-06

Published in Print: 2016-10-01

Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 231, Issue 10, Pages 583–599, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1956.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sergei I. Ivlev, Artem V. Malin, Antti J. Karttunen, Roman V. Ostvald, and Florian Kraus
Journal of Fluorine Chemistry, 2018
Dan Zhao, Zhao Ma, Bao-Zhong Liu, Rui-Juan Zhang, Zhi-Qiang Wu, Jian Wang, and Pei-Gao Duan
Journal of Physics and Chemistry of Solids, 2017

Comments (0)

Please log in or register to comment.
Log in