Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - Crystalline Materials

Editor-in-Chief: Pöttgen, Rainer

Ed. by Antipov, Evgeny / Boldyreva, Elena V. / Friese, Karen / Huppertz, Hubert / Jahn, Sandro / Tiekink, E. R. T.


IMPACT FACTOR 2018: 1.090
5-year IMPACT FACTOR: 2.159

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.892
Source Normalized Impact per Paper (SNIP) 2018: 0.722

Online
ISSN
2196-7105
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Single-crystal neutron diffraction on γ-LiAlO2: structure determination and estimation of lithium diffusion pathway

Dennis Wiedemann
  • Corresponding author
  • Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sylvio Indris
  • Institut für Physikalische Chemie und Elektrochemie and ZFM – Zentrum für Festkörperchemie und Neue Materialien, Leibniz Universität Hannover, Callinstraße 3–3a, 30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Meven
  • Institut für Kristallographie, RWTH Aaachen and Jülich Centre for Neutron Scattering (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85747 Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Björn Pedersen
  • Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85747 Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans Boysen
  • Sektion Kristallographie, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinhard Uecker / Paul Heitjans
  • Institut für Physikalische Chemie und Elektrochemie and ZFM – Zentrum für Festkörperchemie und Neue Materialien, Leibniz Universität Hannover, Callinstraße 3–3a, 30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Lerch
  • Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-20 | DOI: https://doi.org/10.1515/zkri-2015-1896

Abstract

γ-Lithium aluminum oxide is a paradigmatic example of an ultraslow lithium ion conductor. This characteristic plays a crucial role in its proposed and actual applications. Herein, we report on the outcome of single-crystal neutron diffraction studies at ambient and high temperature. Careful evaluation confirms the commonly assumed room-temperature structure as derived by powder neutron diffraction in 1965. At 1043 K, a split of the lithium position hints at the onset of intrinsic diffusion. Analysis of the negative scattering-length density using the maximum-entropy method (MEM) indicates a preference for a strongly curved diffusion pathway traversing octahedral voids between adjacent lithium sites. These results help to understand ultraslow lithium diffusion in well-ordered ionic solids on the microscopic scale and, ultimately, to establish structure–property relationships.

Keywords: anisotropic displacement parameters; diffusion pathways; high-temperature neutron diffraction; lithium aluminum oxide; maximum-entropy method

References

  • [1]

    H. Cao, B. Xia, Y. Zhang, N. Xu, LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 2005, 176, 911.Google Scholar

  • [2]

    L. Li, Z. Chen, Q. Zhang, M. Xu, X. Zhou, H. Zhu, K. Zhang, A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 894.Web of ScienceGoogle Scholar

  • [3]

    M. A. K. L. Dissanayake, Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics 2004, 10, 221.CrossrefGoogle Scholar

  • [4]

    P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865.Google Scholar

  • [5]

    H. Takahashi, N. Yamazaki, T. Watanabe, K. Suzuki (Nippon Chemicals Industrial Co.): Gamma Lithium Aluminate Product and Process of Making. US-6,290,928, 2001.Google Scholar

  • [6]

    B. Rasneur, Tritium breeding material: γ-LiAlO2. Fusion Technol. 1985, 8, 1909.Google Scholar

  • [7]

    M. Übeyli, Impact of solid breeder materials on tritium breeding in a hybrid reactor. J. Fusion Energy 2006, 25, 99.CrossrefGoogle Scholar

  • [8]

    Z. Weyberg, Ueber einige spinellartige Verbindungen. Centralbl. Mineral., Geol. Paläontol. 1906, 645.Google Scholar

  • [9]

    E. F. Bertaut, A. Delapalme, G. Bassi, A. Durif-Varambon, J.-C. Joubert, Structure de γ-LiAlO2. Bull. Soc. Fr. Minéral. Cristallogr. 1965, 88, 103.Google Scholar

  • [10]

    M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2. Acta Crystallogr. 1965, 19, 396.CrossrefGoogle Scholar

  • [11]

    S. Indris, P. Heitjans, R. Uecker, T. Bredow, Local electronic structure in a LiAlO2 single crystal studied with 7Li NMR spectroscopy and comparison with quantum chemical calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 245120.CrossrefGoogle Scholar

  • [12]

    S. Indris, P. Heitjans, R. Uecker, B. Roling, Li ion dynamics in a LiAlO2 single crystal studied by 7Li NMR spectroscopy and conductivity measurements. J. Phys. Chem. C 2012, 116, 14243.Google Scholar

  • [13]

    J. de Meulenaer, H. Tompa, The absorption correction in crystal structure analysis. Acta Crystallogr. 1965, 19, 1014.CrossrefGoogle Scholar

  • [14]

    P. J. Becker, P. Coppens, Extinction within the limit of validity of the darwin transfer equations. I. General formalism for primary and secondary extinction and their applications to spherical crystals. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1974, 30, 129.CrossrefGoogle Scholar

  • [15]

    P. J. Becker, P. Coppens, Extinction within the limit of validity of the darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1974, 30, 148.CrossrefGoogle Scholar

  • [16]

    B. Pedersen, RESI: Thermal neutron single crystal diffractometer. J. Large-Scale Res. Facil. 2015, 1, A4.Google Scholar

  • [17]

    A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, A. M. M. Schreurs, An intensity evaluation method: EVAL-14. J. Appl. Crystallogr. 2003, 36, 220.CrossrefGoogle Scholar

  • [18]

    A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148.Google Scholar

  • [19]

    G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.Google Scholar

  • [20]

    V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. – Cryst. Mater. 2014, 229, 345.Google Scholar

  • [21]

    M. Meven, A. Sazonov, HEiDi: single crystal diffractometer at hot source. J. Large-Scale Res. Facil. 2015, 1, A7.Google Scholar

  • [22]

    K. Momma, T. Ikeda, A. A. Belik, F. Izumi, Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr. 2013, 28, 184.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    K. Brandenburg, H. Putz, Diamond 3.2 – Crystal and Molecular Structure Visualization, Crystal Impact, Bonn (Germany) 2014.Google Scholar

  • [24]

    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    M. Berglund, M. E. Wieser, Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 397.Web of ScienceGoogle Scholar

  • [26]

    V. F. Sears, Scattering lengths for neutrons, in International Tables for Crystallography, Vol. C, 3rd ed. (Ed. E. Prince), Kluwer Academic Publishers, Dordrecht (Netherlands) pp. 444, 2004.Google Scholar

  • [27]

    S. Konishi, H. Ohno, Electrical conductivity of polycrystalline Li2SiO3 and γ-LiAlO2. J. Am. Ceram. Soc. 1984, 67, 418.Google Scholar

  • [28]

    F. Izumi, Beyond the ability of Rietveld analysis: MEM-based pattern fitting. Solid State Ionics 2004, 172, 1.Google Scholar

  • [29]

    A. Senyshyn, H. Boysen, R. Niewa, J. Banys, M. Kinka, Y. Burak, V. Adamiv, F. Izumi, I. Chumak, H. Fuess, High-temperature properties of lithium tetraborate Li2B4O7. J. Phys. D: Appl. Phys. 2012, 45, 175305.CrossrefGoogle Scholar

  • [30]

    M. Yashima, Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors – a brief review. J. Ceram. Soc. Jpn. 2009, 117, 1055.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Dennis Wiedemann, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:

aPresent address: Karlsruher Institut für Technologie, Institut für Angewandte Materialien (IAM-ESS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany


Received: 2015-09-07

Accepted: 2015-10-26

Published Online: 2015-11-20

Published in Print: 2016-03-01


Citation Information: Zeitschrift für Kristallographie - Crystalline Materials, Volume 231, Issue 3, Pages 189–193, ISSN (Online) 2196-7105, ISSN (Print) 2194-4946, DOI: https://doi.org/10.1515/zkri-2015-1896.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Baltej Singh, M. K. Gupta, R. Mittal, and S. L. Chaplot
Physical Chemistry Chemical Physics, 2018
[2]
Baltej Singh, Mayanak K. Gupta, Ranjan Mittal, and Samrath L. Chaplot
Journal of Materials Chemistry A, 2018
[3]
Thomas Bräuniger, Burkhard Groh, Igor L. Moudrakovski, and Sylvio Indris
The Journal of Physical Chemistry A, 2016, Volume 120, Number 40, Page 7839
[4]
Dennis Wiedemann, Suliman Nakhal, Johanna Rahn, Elena Witt, Mazharul M. Islam, Stefan Zander, Paul Heitjans, Harald Schmidt, Thomas Bredow, Martin Wilkening, and Martin Lerch
Chemistry of Materials, 2016, Volume 28, Number 3, Page 915

Comments (0)

Please log in or register to comment.
Log in